Yehong Xu, Dan He, P. Chao, Jiwon Kim, Wen Hua, Xiaofang Zhou
{"title":"Route Reconstruction Using Low-Quality Bluetooth Readings","authors":"Yehong Xu, Dan He, P. Chao, Jiwon Kim, Wen Hua, Xiaofang Zhou","doi":"10.1145/3397536.3422224","DOIUrl":null,"url":null,"abstract":"Route reconstruction targets at recovering the actual routes of objects moving on an underlying road network from their times-tamped position measurements. This fundamental pre-processing step to many location-based applications has been extensively studied for GPS data, which are object-centric and relatively densely sampled data. In this paper, we investigate the problem of route reconstruction using data collected from road-side Bluetooth scanners. In many cities, Bluetooth scanners are installed in road networks for monitoring the movement of Bluetooth-enabled devices. To address new challenges caused by such reader-centric Bluetooth data including spatial and temporal distortion, a new route reconstruction framework is proposed to transform Bluetooth readings through a family of distortion suppression strategies such that the transformed data can work well with the Hidden Markov model (HMM) map-matching approach. Extensive experiments are conducted to evaluate different transformation strategies with real-world datasets. The experimental results show that when the algorithm uses the baseline or the proposed transformation strategies, the map matching F1 score can be increased by up to 10% depending on the severity of distortion.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Route reconstruction targets at recovering the actual routes of objects moving on an underlying road network from their times-tamped position measurements. This fundamental pre-processing step to many location-based applications has been extensively studied for GPS data, which are object-centric and relatively densely sampled data. In this paper, we investigate the problem of route reconstruction using data collected from road-side Bluetooth scanners. In many cities, Bluetooth scanners are installed in road networks for monitoring the movement of Bluetooth-enabled devices. To address new challenges caused by such reader-centric Bluetooth data including spatial and temporal distortion, a new route reconstruction framework is proposed to transform Bluetooth readings through a family of distortion suppression strategies such that the transformed data can work well with the Hidden Markov model (HMM) map-matching approach. Extensive experiments are conducted to evaluate different transformation strategies with real-world datasets. The experimental results show that when the algorithm uses the baseline or the proposed transformation strategies, the map matching F1 score can be increased by up to 10% depending on the severity of distortion.