Research on Underwater Image Enhancement Algorithm Based on SRGAN

Zhiming Zhang, Lina Jin, Tianzhu Gao
{"title":"Research on Underwater Image Enhancement Algorithm Based on SRGAN","authors":"Zhiming Zhang, Lina Jin, Tianzhu Gao","doi":"10.1109/ICCSI55536.2022.9970668","DOIUrl":null,"url":null,"abstract":"Due to the limitation of the special underwater imaging environment, underwater images usually have problems such as low contrast, blurred texture features, color distortion and so on. Based on the typical problem of underwater images, this paper improves the network structure and loss function on the basis of the original SRGAN network model, and achieves good results. The generative network reduces the convolutional layers and removes the normalization layer (BN layer), reducing resource consumption. The loss function introduces L1 content loss and VGG19 perceptual loss to improve the stability of training. The experimental results show that the improved SRGAN network model effectively solves the color distortion and blurring of underwater images, and has a good enhancement effect on underwater images.","PeriodicalId":421514,"journal":{"name":"2022 International Conference on Cyber-Physical Social Intelligence (ICCSI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Cyber-Physical Social Intelligence (ICCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSI55536.2022.9970668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the limitation of the special underwater imaging environment, underwater images usually have problems such as low contrast, blurred texture features, color distortion and so on. Based on the typical problem of underwater images, this paper improves the network structure and loss function on the basis of the original SRGAN network model, and achieves good results. The generative network reduces the convolutional layers and removes the normalization layer (BN layer), reducing resource consumption. The loss function introduces L1 content loss and VGG19 perceptual loss to improve the stability of training. The experimental results show that the improved SRGAN network model effectively solves the color distortion and blurring of underwater images, and has a good enhancement effect on underwater images.
基于SRGAN的水下图像增强算法研究
由于水下特殊成像环境的限制,水下图像通常存在对比度低、纹理特征模糊、色彩失真等问题。本文针对水下图像的典型问题,在原有SRGAN网络模型的基础上,对网络结构和损失函数进行了改进,取得了较好的效果。生成网络减少了卷积层,去掉了归一化层(BN层),减少了资源消耗。损失函数引入L1内容损失和VGG19感知损失,提高训练的稳定性。实验结果表明,改进的SRGAN网络模型有效地解决了水下图像的色彩失真和模糊问题,对水下图像具有良好的增强效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信