Self-Learning Cloud Controllers: Fuzzy Q-Learning for Knowledge Evolution

Pooyan Jamshidi, Amir Molzam Sharifloo, C. Pahl, Andreas Metzger, G. Estrada
{"title":"Self-Learning Cloud Controllers: Fuzzy Q-Learning for Knowledge Evolution","authors":"Pooyan Jamshidi, Amir Molzam Sharifloo, C. Pahl, Andreas Metzger, G. Estrada","doi":"10.1109/ICCAC.2015.35","DOIUrl":null,"url":null,"abstract":"Auto-scaling features enable cloud applications to maintain enough resources to satisfy demand spikes, reduce costs and keep performance in check. Most auto-scaling strategies rely on a predefined set of rules to scale up/down the required resources depending on the application usage. Those rules are however difficult to devise and generalize, and users are often left alone tuning auto-scale parameters of essentially blackbox applications. In this paper, we propose a novel fuzzy reinforcement learning controller, FQL4KE, which automatically scales up or down resources to meet performance requirements. The Q-Learning technique, a model-free reinforcement learning strategy, frees users of most tuning parameters. FQL4KE has been successfully applied and we therefore think that a fuzzy controller with Q-Learning is indeed a promising combination for auto-scaling resources.","PeriodicalId":133491,"journal":{"name":"2015 International Conference on Cloud and Autonomic Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Cloud and Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAC.2015.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

Auto-scaling features enable cloud applications to maintain enough resources to satisfy demand spikes, reduce costs and keep performance in check. Most auto-scaling strategies rely on a predefined set of rules to scale up/down the required resources depending on the application usage. Those rules are however difficult to devise and generalize, and users are often left alone tuning auto-scale parameters of essentially blackbox applications. In this paper, we propose a novel fuzzy reinforcement learning controller, FQL4KE, which automatically scales up or down resources to meet performance requirements. The Q-Learning technique, a model-free reinforcement learning strategy, frees users of most tuning parameters. FQL4KE has been successfully applied and we therefore think that a fuzzy controller with Q-Learning is indeed a promising combination for auto-scaling resources.
自学习云控制器:面向知识进化的模糊q -学习
自动扩展功能使云应用程序能够维护足够的资源来满足需求高峰,降低成本并保持性能。大多数自动扩展策略依赖于一组预定义的规则来根据应用程序的使用情况增加/减少所需的资源。然而,这些规则很难设计和推广,并且用户通常需要独自调整本质上是黑盒应用程序的自动缩放参数。在本文中,我们提出了一种新的模糊强化学习控制器FQL4KE,它可以自动缩放资源以满足性能要求。Q-Learning技术是一种无模型的强化学习策略,它使用户免于大多数调优参数。FQL4KE已经成功应用,因此我们认为带有Q-Learning的模糊控制器确实是一个有前途的自动缩放资源组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信