Stability vs. Effectiveness: Improved Sentence-Level Combination of Machine Translation Based on Weighted MBR

Bo Wang, T. Zhao, Muyun Yang, Hongfei Jiang, Sheng Li
{"title":"Stability vs. Effectiveness: Improved Sentence-Level Combination of Machine Translation Based on Weighted MBR","authors":"Bo Wang, T. Zhao, Muyun Yang, Hongfei Jiang, Sheng Li","doi":"10.1109/IALP.2009.17","DOIUrl":null,"url":null,"abstract":"We describe an improved strategy to combine the outputs of machine translation on sentence-level balancing the stability and the effectiveness of the combination. The new method alternates the classical MBR-based sentence-level combination with weighted Minimum Bayes Risk (wMBR). During the calculation of the risk, we weight the hypotheses with the performance of the MT system, which is measured by the automatic evaluation metrics on the development data. In experiments, the wMBR-based method stably achieve better results than other sentence-level methods and get the best position in CWMT08 evaluation track outperforming the other word-level and sentence-level combination systems.","PeriodicalId":156840,"journal":{"name":"2009 International Conference on Asian Language Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2009.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We describe an improved strategy to combine the outputs of machine translation on sentence-level balancing the stability and the effectiveness of the combination. The new method alternates the classical MBR-based sentence-level combination with weighted Minimum Bayes Risk (wMBR). During the calculation of the risk, we weight the hypotheses with the performance of the MT system, which is measured by the automatic evaluation metrics on the development data. In experiments, the wMBR-based method stably achieve better results than other sentence-level methods and get the best position in CWMT08 evaluation track outperforming the other word-level and sentence-level combination systems.
稳定性与有效性:基于加权MBR的改进句子级机器翻译组合
我们描述了一种改进的策略来结合句子级机器翻译的输出,平衡了组合的稳定性和有效性。该方法将经典的基于最小贝叶斯风险的句子级组合与加权最小贝叶斯风险(wMBR)替换。在风险计算过程中,我们将假设与MT系统的性能进行加权,并通过开发数据上的自动评估度量来衡量。在实验中,基于wmbr的方法稳定地取得了比其他句子级方法更好的结果,并在CWMT08评价轨道上优于其他词级和句子级组合系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信