{"title":"Decentralized Load Management in HAN: An IoT-Assisted Approach","authors":"Jagnyashini Debadarshini, S. Saha, S. Samantaray","doi":"10.1109/SmartGridComm52983.2022.9960995","DOIUrl":null,"url":null,"abstract":"A Home Area Network (HAN) is considered to be a significant component of Advanced Metering Infrastructure (AMI) and has been studied well in many works. It binds all the electrical components installed in a defined premise together for their close monitoring and management. However, HAN has been realized so far mostly as a centralized system. Therefore, like any other centralized system, the traditional realization of HAN also suffers from various well-known problems, such as single-point-of-failure, susceptibility to attacks, requirement of specialized infrastructure, inflexibility to easy expansion, etc. To address these issues, in this work, we propose a decentralized design of HAN. In particular, we propose an IoT based design where instead of a central controller, the overall system operation is controlled and managed through decentralized coordination among the the electrical appliances. We leverage Synchronous-Transmission (ST) based data-sharing protocols in IoT to ac-complish our goal. To demonstrate the efficacy of the proposed decentralized framework, we also design a real-time intra-HAN load-management strategy and implement it in real IoT-devices. Evaluation of the same over emulation platforms and IoT testbeds show upto 62% reduction of peak load over a wide variety of load profiles.","PeriodicalId":252202,"journal":{"name":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm52983.2022.9960995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
A Home Area Network (HAN) is considered to be a significant component of Advanced Metering Infrastructure (AMI) and has been studied well in many works. It binds all the electrical components installed in a defined premise together for their close monitoring and management. However, HAN has been realized so far mostly as a centralized system. Therefore, like any other centralized system, the traditional realization of HAN also suffers from various well-known problems, such as single-point-of-failure, susceptibility to attacks, requirement of specialized infrastructure, inflexibility to easy expansion, etc. To address these issues, in this work, we propose a decentralized design of HAN. In particular, we propose an IoT based design where instead of a central controller, the overall system operation is controlled and managed through decentralized coordination among the the electrical appliances. We leverage Synchronous-Transmission (ST) based data-sharing protocols in IoT to ac-complish our goal. To demonstrate the efficacy of the proposed decentralized framework, we also design a real-time intra-HAN load-management strategy and implement it in real IoT-devices. Evaluation of the same over emulation platforms and IoT testbeds show upto 62% reduction of peak load over a wide variety of load profiles.