Classification of Motor Imagery EEG Signals using MEMD, CSP, Entropy and Walsh Hadamard Transform

D. Sawant, Vaibhavi Padwal, Jugal Joshi, Tanvi Keluskar, Ragini Lalwani, Tanushree Sharma, R. Daruwala
{"title":"Classification of Motor Imagery EEG Signals using MEMD, CSP, Entropy and Walsh Hadamard Transform","authors":"D. Sawant, Vaibhavi Padwal, Jugal Joshi, Tanvi Keluskar, Ragini Lalwani, Tanushree Sharma, R. Daruwala","doi":"10.1109/IBSSC47189.2019.8973092","DOIUrl":null,"url":null,"abstract":"This paper provides a novel set of features for classification of motor imagery tasks including the following two classes: right and left hand. While performing motor imagery tasks, desynchronization is seen in the mu and betabands over the sensorimotor cortex region. In order to capture these changes in the different frequency bands, we use MEMD for decomposing the EEG into oscillatory components called IMFs which characterize either a single frequency or a narrow band of frequencies. Features are extracted by applying common spatial pattern (CSP), Entropy and Fast Walsh Hadamard Transform (FWHT) on these IMFs. Using SVM classifier, the above features yield a maximum accuracy of 95%. The proposed feature set results in a better discrimination for motor imagery signals compared to the earlier work in this field.","PeriodicalId":148941,"journal":{"name":"2019 IEEE Bombay Section Signature Conference (IBSSC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC47189.2019.8973092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper provides a novel set of features for classification of motor imagery tasks including the following two classes: right and left hand. While performing motor imagery tasks, desynchronization is seen in the mu and betabands over the sensorimotor cortex region. In order to capture these changes in the different frequency bands, we use MEMD for decomposing the EEG into oscillatory components called IMFs which characterize either a single frequency or a narrow band of frequencies. Features are extracted by applying common spatial pattern (CSP), Entropy and Fast Walsh Hadamard Transform (FWHT) on these IMFs. Using SVM classifier, the above features yield a maximum accuracy of 95%. The proposed feature set results in a better discrimination for motor imagery signals compared to the earlier work in this field.
基于MEMD、CSP、熵和Walsh Hadamard变换的运动图像脑电信号分类
本文提出了一套新的运动想象任务分类特征,包括右手和左手两类。在执行运动想象任务时,在感觉运动皮层区域的mu和beta带中可以看到不同步。为了捕捉不同频带中的这些变化,我们使用MEMD将EEG分解为称为imf的振荡分量,这些振荡分量具有单频或窄频带的特征。利用公共空间模式(CSP)、熵和快速Walsh Hadamard变换(FWHT)对这些imf进行特征提取。使用SVM分类器,上述特征的准确率最高可达95%。与该领域的早期工作相比,所提出的特征集可以更好地识别运动图像信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信