A separation between reconfigurable mesh models

P. MacKenzie
{"title":"A separation between reconfigurable mesh models","authors":"P. MacKenzie","doi":"10.1109/IPPS.1993.262860","DOIUrl":null,"url":null,"abstract":"The author proves separations between two models of the reconfigurable mesh (rmesh), the cross-over model and the non-cross-over model. Specifically he shows that in the non-cross-over model, a k*n rmesh requires Omega ((log n)/k) time to compute the parity of n bits stored one per column, and a square root n* square root n rmesh requires Omega (log*n) time to compute the parity of n bits stored one per processor. In the cross-over model, in either case, the parity can be computed in constant time. The lower bounds given in this paper are the first separations demonstrated between the cross-over and non-cross-over model. These lower bounds do not rely on the bandwidth constraints of the mesh and do not restrict the instruction sets of the processors. Moreover, they are the first lower bounds for the rmesh which require only binary inputs.<<ETX>>","PeriodicalId":248927,"journal":{"name":"[1993] Proceedings Seventh International Parallel Processing Symposium","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Seventh International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1993.262860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The author proves separations between two models of the reconfigurable mesh (rmesh), the cross-over model and the non-cross-over model. Specifically he shows that in the non-cross-over model, a k*n rmesh requires Omega ((log n)/k) time to compute the parity of n bits stored one per column, and a square root n* square root n rmesh requires Omega (log*n) time to compute the parity of n bits stored one per processor. In the cross-over model, in either case, the parity can be computed in constant time. The lower bounds given in this paper are the first separations demonstrated between the cross-over and non-cross-over model. These lower bounds do not rely on the bandwidth constraints of the mesh and do not restrict the instruction sets of the processors. Moreover, they are the first lower bounds for the rmesh which require only binary inputs.<>
可重构网格模型之间的分离
作者证明了可重构网格的两种模型——交叉模型和非交叉模型之间的分离。具体来说,他表明,在非交叉模型中,k*n网格需要Omega ((log n)/k)时间来计算每列存储的n位的奇偶性,而平方根n*平方根n网格需要Omega (log*n)时间来计算每个处理器存储的n位的奇偶性。在交叉模型中,无论哪种情况,奇偶校验都可以在常数时间内计算出来。本文给出的下界是交叉和非交叉模型之间的第一次分离。这些下界不依赖于网格的带宽约束,也不限制处理器的指令集。此外,它们是网格的第一个下界,只需要二进制输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信