Big data analysis architecture for multi IDS sensors using memory based processor

Ferry Astika Saputra, Muhammad Salman, K. Ramli, A. Abdillah, I. Syarif
{"title":"Big data analysis architecture for multi IDS sensors using memory based processor","authors":"Ferry Astika Saputra, Muhammad Salman, K. Ramli, A. Abdillah, I. Syarif","doi":"10.1109/KCIC.2017.8228456","DOIUrl":null,"url":null,"abstract":"The massive internet usage is followed by the rise of cyber-related crime such as information stealing, denial-of-service (DoS) attack, trojan and malware. To cope with the threats, one of most popular choice is using Intrusion Detection System (IDS). The logs produced by IDS in a day is huge and the limitation of computing power is the main problem to process that logs files. In this paper, we propose a big data analysis architecture of multi IDS sensors using in-memory data processing. Deployed IDS sensors are taking an extra role as computation slave to build scalable data analysis platform for network security analysis. So, adding more sensors means expanding computational resources. Adding to three sensors are helping data computation of clustering algorithm faster up to 27% comparing to the computation by using only one sensor. This research also introduces the use of memory-based processor, this system provides 7,9 times faster data processing than conservative MapReduce operation. And moreover, we also have performed botnets classification over Spark RDD that give high accuracy result to 99%.","PeriodicalId":117148,"journal":{"name":"2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KCIC.2017.8228456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The massive internet usage is followed by the rise of cyber-related crime such as information stealing, denial-of-service (DoS) attack, trojan and malware. To cope with the threats, one of most popular choice is using Intrusion Detection System (IDS). The logs produced by IDS in a day is huge and the limitation of computing power is the main problem to process that logs files. In this paper, we propose a big data analysis architecture of multi IDS sensors using in-memory data processing. Deployed IDS sensors are taking an extra role as computation slave to build scalable data analysis platform for network security analysis. So, adding more sensors means expanding computational resources. Adding to three sensors are helping data computation of clustering algorithm faster up to 27% comparing to the computation by using only one sensor. This research also introduces the use of memory-based processor, this system provides 7,9 times faster data processing than conservative MapReduce operation. And moreover, we also have performed botnets classification over Spark RDD that give high accuracy result to 99%.
基于内存处理器的多IDS传感器大数据分析架构
随着互联网的大量使用,信息窃取、拒绝服务(DoS)攻击、特洛伊木马和恶意软件等与网络相关的犯罪也在增加。为了应对这些威胁,最常用的选择之一是使用入侵检测系统(IDS)。IDS在一天内产生的日志量非常大,处理这些日志文件的主要问题是计算能力的限制。本文提出了一种基于内存数据处理的多IDS传感器大数据分析架构。为构建可扩展的网络安全分析数据分析平台,部署的IDS传感器承担了额外的计算奴隶角色。因此,增加更多的传感器意味着扩展计算资源。与仅使用一个传感器相比,增加三个传感器有助于聚类算法的数据计算速度提高27%。本研究还介绍了基于内存的处理器的使用,该系统提供了比保守MapReduce操作快7、9倍的数据处理速度。此外,我们还在Spark RDD上进行了僵尸网络分类,准确率高达99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信