Dini derivatives and regularity for exchangeable increment processes

O. A. Hernández, Gerónimo Uribe Bravo
{"title":"Dini derivatives and regularity for exchangeable increment processes","authors":"O. A. Hernández, Gerónimo Uribe Bravo","doi":"10.1090/btran/44","DOIUrl":null,"url":null,"abstract":". Let X be an exchangeable increment (EI) process whose sample paths are of infinite variation. We prove that for any fixed t almost surely, limsup h Ñ 0 ˘ p X t ` h ´ X t q{ h “ 8 and limsup h Ñ 0 ˘ p X t ` h ´ X t q{ h “ ´8 . This extends a celebrated result of Rogozin for L´evy processes obtained in 1968 and completes the known picture for finite-variation EI processes. Applications are numerous. For example, we deduce that both half-lines p´8 , 0 q and p 0 , 8q are visited immediately for infinite variation EI processes (called upward and downward regularity). We also generalize the zero-one law of Mil- lar for L´evy processes by showing continuity of X when it reaches its minimum in the infinite variation EI case; an analogous result for all EI processes links right and left continuity at the minimum with upward and downward regularity. We also consider results of Durrett, Iglehart, and Miller on the weak convergence of conditioned Brownian bridges to the normalized Brownian excursion considered in [DIM77] and broadened to a subclass of L´evy processes and EI processes by Chaumont and the second author. We prove it here for all infinite variation EI processes. We furthermore obtain a description of the convex minorant known for L´evy processes found in [Ann. Prob. 40 (2012), pp. 1636–1674] and extend it to non-piecewise linear EI processes. Our main tool to study the Dini derivatives is a change of measure for EI processes which extends the Esscher transform for L´evy processes.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

. Let X be an exchangeable increment (EI) process whose sample paths are of infinite variation. We prove that for any fixed t almost surely, limsup h Ñ 0 ˘ p X t ` h ´ X t q{ h “ 8 and limsup h Ñ 0 ˘ p X t ` h ´ X t q{ h “ ´8 . This extends a celebrated result of Rogozin for L´evy processes obtained in 1968 and completes the known picture for finite-variation EI processes. Applications are numerous. For example, we deduce that both half-lines p´8 , 0 q and p 0 , 8q are visited immediately for infinite variation EI processes (called upward and downward regularity). We also generalize the zero-one law of Mil- lar for L´evy processes by showing continuity of X when it reaches its minimum in the infinite variation EI case; an analogous result for all EI processes links right and left continuity at the minimum with upward and downward regularity. We also consider results of Durrett, Iglehart, and Miller on the weak convergence of conditioned Brownian bridges to the normalized Brownian excursion considered in [DIM77] and broadened to a subclass of L´evy processes and EI processes by Chaumont and the second author. We prove it here for all infinite variation EI processes. We furthermore obtain a description of the convex minorant known for L´evy processes found in [Ann. Prob. 40 (2012), pp. 1636–1674] and extend it to non-piecewise linear EI processes. Our main tool to study the Dini derivatives is a change of measure for EI processes which extends the Esscher transform for L´evy processes.
可交换增量过程的Dini导数和正则性
. 设X是一个可交换增量(EI)过程,其样本路径是无限变化的。我们证明,对于几乎可以肯定的任何固定t, limsup Ñ 0 × p X t ' h ' X t q{h " 8和limsup Ñ 0 × p X t ' h ' X t q{h " 8。这扩展了Rogozin在1968年获得的关于L ' evy过程的著名结果,并完成了有限变化EI过程的已知图像。应用程序很多。例如,我们推断,对于无限变化EI过程(称为向上和向下规律性),可以立即访问半线p´8,0q和p 0,8q。通过证明X在无穷变EI情况下达到最小值时的连续性,我们还推广了L′evy过程的Mil- lar的0 - 1定律;对所有EI过程都有类似的结果,至少具有上下规律性的左右连续性。我们还考虑了Durrett, Iglehart和Miller关于条件布朗桥对[DIM77]中考虑的标准化布朗漂移的弱收敛的结果,并由Chaumont和第二作者扩展到L ' evy过程和EI过程的子类。我们在这里证明了它适用于所有无穷变EI过程。我们进一步得到了在[Ann]中发现的L ' evy过程已知的凸小量的描述。并将其推广到非分段线性EI过程中。我们研究Dini导数的主要工具是EI过程的测度变化,它扩展了L ' evy过程的Esscher变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信