Capacity of Private Linear Computation for Coded Databases

Sarah A. Obead, Hsuan-Yin Lin, E. Rosnes, J. Kliewer
{"title":"Capacity of Private Linear Computation for Coded Databases","authors":"Sarah A. Obead, Hsuan-Yin Lin, E. Rosnes, J. Kliewer","doi":"10.1109/ALLERTON.2018.8636039","DOIUrl":null,"url":null,"abstract":"We consider the problem of private linear computation (PLC) in a distributed storage system. In PLC, a user wishes to compute a linear combination of f messages stored in noncolluding databases while revealing no information about the coefficients of the desired linear combination to the databases. In extension of our previous work we employ linear codes to encode the information on the databases. We show that the PLC capacity, which is the ratio of the desired linear function size and the total amount of downloaded information, matches the maximum distance separable (MDS) coded capacity of private information retrieval for a large class of linear codes that includes MDS codes. In particular, the proposed converse is valid for any number of messages and linear combinations, and the capacity expression depends on the rank of the coefficient matrix obtained from all linear combinations.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8636039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We consider the problem of private linear computation (PLC) in a distributed storage system. In PLC, a user wishes to compute a linear combination of f messages stored in noncolluding databases while revealing no information about the coefficients of the desired linear combination to the databases. In extension of our previous work we employ linear codes to encode the information on the databases. We show that the PLC capacity, which is the ratio of the desired linear function size and the total amount of downloaded information, matches the maximum distance separable (MDS) coded capacity of private information retrieval for a large class of linear codes that includes MDS codes. In particular, the proposed converse is valid for any number of messages and linear combinations, and the capacity expression depends on the rank of the coefficient matrix obtained from all linear combinations.
编码数据库的私有线性计算能力
研究分布式存储系统中的私有线性计算问题。在PLC中,用户希望计算存储在非串通数据库中的f个消息的线性组合,而不向数据库透露有关所期望线性组合的系数的信息。在之前工作的基础上,我们采用线性编码对数据库中的信息进行编码。我们表明,PLC容量是期望的线性函数大小与下载信息总量的比率,与包含MDS代码的大类线性代码的私有信息检索的最大距离可分离(MDS)编码容量相匹配。特别地,所提出的逆对任意数量的消息和线性组合都有效,并且容量表达式依赖于从所有线性组合得到的系数矩阵的秩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信