Prediction of Driver’s Stress Affection in Simulated Autonomous Driving Scenarios

Valerio De Caro, Herbert Danzinger, C. Gallicchio, Clemens Könczöl, Vincenzo Lomonaco, Mina Marmpena, S. Politi, O. Veledar, D. Bacciu
{"title":"Prediction of Driver’s Stress Affection in Simulated Autonomous Driving Scenarios","authors":"Valerio De Caro, Herbert Danzinger, C. Gallicchio, Clemens Könczöl, Vincenzo Lomonaco, Mina Marmpena, S. Politi, O. Veledar, D. Bacciu","doi":"10.1109/ICASSPW59220.2023.10193353","DOIUrl":null,"url":null,"abstract":"We investigate the task of predicting stress affection from physiological data of users experiencing simulations of autonomous driving. We approach this task on two levels of granularity, depending on whether the prediction is performed at the end of the simulation, or along the simulation. In the former, denoted as coarse-grained prediction, we employed Decision Trees. In the latter, denoted as fine-grained prediction, we employed Echo State Networks, a Recurrent Neural Network that allows efficient learning from temporal data and hence is suitable for pervasive environments. We conduct experiments on a private dataset of physiological data from people participating in multiple driving scenarios simulating different stress-inducing events. The results show that the proposed model is capable of detecting event-related stress reactions, proving the existence of a correlation between stress-inducing events and the physiological data.","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the task of predicting stress affection from physiological data of users experiencing simulations of autonomous driving. We approach this task on two levels of granularity, depending on whether the prediction is performed at the end of the simulation, or along the simulation. In the former, denoted as coarse-grained prediction, we employed Decision Trees. In the latter, denoted as fine-grained prediction, we employed Echo State Networks, a Recurrent Neural Network that allows efficient learning from temporal data and hence is suitable for pervasive environments. We conduct experiments on a private dataset of physiological data from people participating in multiple driving scenarios simulating different stress-inducing events. The results show that the proposed model is capable of detecting event-related stress reactions, proving the existence of a correlation between stress-inducing events and the physiological data.
模拟自动驾驶场景下驾驶员应力影响预测
我们研究了从体验自动驾驶模拟的用户的生理数据预测压力影响的任务。我们在两个粒度级别上处理这个任务,这取决于预测是在模拟结束时执行,还是在模拟过程中执行。在前者中,表示为粗粒度预测,我们使用决策树。在后者中,被称为细粒度预测,我们采用了回声状态网络,这是一种循环神经网络,允许从时间数据中有效学习,因此适用于无处不在的环境。我们在一个私人数据集上进行了实验,这些数据集来自参与多种驾驶场景的人,模拟不同的压力诱发事件。结果表明,该模型能够检测事件相关的应激反应,证明应激诱发事件与生理数据之间存在相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信