Benchmarking face morphing forgery detection: Application of stirtrace for impact simulation of different processing steps

M. Hildebrandt, T. Neubert, A. Makrushin, J. Dittmann
{"title":"Benchmarking face morphing forgery detection: Application of stirtrace for impact simulation of different processing steps","authors":"M. Hildebrandt, T. Neubert, A. Makrushin, J. Dittmann","doi":"10.1109/IWBF.2017.7935087","DOIUrl":null,"url":null,"abstract":"We analyze StirTrace towards benchmarking face morphing forgeries and extending it by additional scaling functions for the face biometrics scenario. We benchmark a Benford's law based multi-compression-anomaly detection approach and acceptance rates of morphs for a face matcher to determine the impact of the processing on the quality of the forgeries. We use 2 different approaches for automatically creating 3940 images of morphed faces. Based on this data set, 86614 images are created using StirTrace. A manual selection of 183 high quality morphs is used to derive tendencies based on the subjective forgery quality. Our results show that the anomaly detection seems to be able to detect anomalies in the morphing regions, the multi-compression-anomaly detection performance after the processing can be differentiated into good (e.g. cropping), partially critical (e.g. rotation) and critical results (e.g. additive noise). The influence of the processing on the biometric matcher is marginal.","PeriodicalId":111316,"journal":{"name":"2017 5th International Workshop on Biometrics and Forensics (IWBF)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Workshop on Biometrics and Forensics (IWBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF.2017.7935087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

We analyze StirTrace towards benchmarking face morphing forgeries and extending it by additional scaling functions for the face biometrics scenario. We benchmark a Benford's law based multi-compression-anomaly detection approach and acceptance rates of morphs for a face matcher to determine the impact of the processing on the quality of the forgeries. We use 2 different approaches for automatically creating 3940 images of morphed faces. Based on this data set, 86614 images are created using StirTrace. A manual selection of 183 high quality morphs is used to derive tendencies based on the subjective forgery quality. Our results show that the anomaly detection seems to be able to detect anomalies in the morphing regions, the multi-compression-anomaly detection performance after the processing can be differentiated into good (e.g. cropping), partially critical (e.g. rotation) and critical results (e.g. additive noise). The influence of the processing on the biometric matcher is marginal.
基准人脸变形伪造检测:stirtrace在不同处理步骤冲击仿真中的应用
我们分析了StirTrace对人脸变形伪造的基准测试,并通过面部生物识别场景的额外缩放函数对其进行扩展。我们对基于本福德定律的多压缩异常检测方法和人脸匹配器的变形接受率进行了基准测试,以确定处理对伪造品质量的影响。我们使用两种不同的方法来自动创建3940张变形脸的图像。基于此数据集,使用StirTrace创建了86614张图像。人工选择了183个高质量的变体,用于根据主观伪造质量得出趋势。我们的研究结果表明,异常检测似乎能够检测到变形区域的异常,处理后的多重压缩异常检测性能可以分为良好(如裁剪)、部分临界(如旋转)和临界结果(如加性噪声)。处理对生物识别匹配器的影响是微乎其微的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信