Enhanced recursive feature elimination

Xue-wen Chen, Jong Cheol Jeong
{"title":"Enhanced recursive feature elimination","authors":"Xue-wen Chen, Jong Cheol Jeong","doi":"10.1109/ICMLA.2007.35","DOIUrl":null,"url":null,"abstract":"For classification with small training samples and high dimensionality, feature selection plays an important role in avoiding overfitting problems and improving classification performance. One of the commonly used feature selection methods for small samples problems is recursive feature elimination (RFE) method. RFE method utilizes the generalization capability embedded in support vector machines and is thus suitable for small samples problems. Despite its good performance, RFE tends to discard \"weak\" features, which may provide a significant improvement of performance when combined with other features. In this paper, we propose an enhanced recursive feature elimination (EnRFE) method for feature selection in small training sample classification. Our experimental results show that the proposed method outperforms the original RFE in terms of classification accuracy on various datasets.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"136","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 136

Abstract

For classification with small training samples and high dimensionality, feature selection plays an important role in avoiding overfitting problems and improving classification performance. One of the commonly used feature selection methods for small samples problems is recursive feature elimination (RFE) method. RFE method utilizes the generalization capability embedded in support vector machines and is thus suitable for small samples problems. Despite its good performance, RFE tends to discard "weak" features, which may provide a significant improvement of performance when combined with other features. In this paper, we propose an enhanced recursive feature elimination (EnRFE) method for feature selection in small training sample classification. Our experimental results show that the proposed method outperforms the original RFE in terms of classification accuracy on various datasets.
增强递归特征消除
对于训练样本小、维数高的分类,特征选择对于避免过拟合问题和提高分类性能具有重要作用。递归特征消去法是小样本问题中常用的特征选择方法之一。RFE方法利用了支持向量机的泛化能力,适用于小样本问题。尽管RFE具有良好的性能,但它倾向于抛弃“弱”特性,当与其他特性结合使用时,这些特性可能会提供显著的性能改进。在本文中,我们提出了一种增强的递归特征消除(EnRFE)方法用于小训练样本分类中的特征选择。实验结果表明,本文提出的方法在各种数据集上的分类精度都优于原RFE方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信