Evolution strategies for multivariate-to-anything partially specified random vector generation

S. Stanhope
{"title":"Evolution strategies for multivariate-to-anything partially specified random vector generation","authors":"S. Stanhope","doi":"10.1109/CEC.2004.1331175","DOIUrl":null,"url":null,"abstract":"Multivariate-to-anything methods for partially specified random vector generation work by transforming samples from a driving distribution into samples characterized by given marginals and correlations. The correlations of the transformed random vector are controlled by the driving distribution; sampling a partially specified random vector requires finding an appropriate driving distribution. This paper motivates the use of evolution strategies for solving such problems and compares evolution strategies to conjugate gradient methods in the context of solving a Dirichlet-to-anything transformation. It is shown that the evolution strategy is at least as effective as the conjugate gradient method for solution of the parameterization problem.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"2265 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multivariate-to-anything methods for partially specified random vector generation work by transforming samples from a driving distribution into samples characterized by given marginals and correlations. The correlations of the transformed random vector are controlled by the driving distribution; sampling a partially specified random vector requires finding an appropriate driving distribution. This paper motivates the use of evolution strategies for solving such problems and compares evolution strategies to conjugate gradient methods in the context of solving a Dirichlet-to-anything transformation. It is shown that the evolution strategy is at least as effective as the conjugate gradient method for solution of the parameterization problem.
多变量到任意部分指定随机向量生成的进化策略
部分指定随机向量生成的多变量任意方法通过将样本从驱动分布转换为具有给定边际和相关性特征的样本来工作。变换后的随机向量的相关性由驱动分布控制;对部分指定的随机向量进行采样需要找到合适的驱动分布。本文鼓励使用进化策略来解决这类问题,并将进化策略与求解Dirichlet-to-anything变换的共轭梯度方法进行比较。结果表明,演化策略在求解参数化问题时至少与共轭梯度法一样有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信