A variable geometric state filtering for stochastic linear systems subject to intermittent unknown inputs

J. Keller, D. Sauter
{"title":"A variable geometric state filtering for stochastic linear systems subject to intermittent unknown inputs","authors":"J. Keller, D. Sauter","doi":"10.1109/SYSTOL.2010.5676048","DOIUrl":null,"url":null,"abstract":"In this paper, a new approach for state filtering of dynamic stochastic discrete-time systems affected by unknown inputs is presented. The proposed state filtering scheme includes a restricted diagonal detection filter generating a set of minimum variance white detection signals, each of them sensitive to a particular component of the unknown input vector. After having tested the statistical effect of each unknown input in order to update online the unknown inputs decoupling constraint, the variable geometric state filtering is obtained by minimizing the state estimation errors covariance matrix. Compared to the standard unknown input Kalman filter, a new degree of freedom appears in the covariance optimisation problem at the detection time of a non significant unknown input. A comparative study with the standard unknown input Kalman filter shows the efficiency of the proposed approach, particularly when the unknown inputs are intermittent.","PeriodicalId":253370,"journal":{"name":"2010 Conference on Control and Fault-Tolerant Systems (SysTol)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Conference on Control and Fault-Tolerant Systems (SysTol)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSTOL.2010.5676048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a new approach for state filtering of dynamic stochastic discrete-time systems affected by unknown inputs is presented. The proposed state filtering scheme includes a restricted diagonal detection filter generating a set of minimum variance white detection signals, each of them sensitive to a particular component of the unknown input vector. After having tested the statistical effect of each unknown input in order to update online the unknown inputs decoupling constraint, the variable geometric state filtering is obtained by minimizing the state estimation errors covariance matrix. Compared to the standard unknown input Kalman filter, a new degree of freedom appears in the covariance optimisation problem at the detection time of a non significant unknown input. A comparative study with the standard unknown input Kalman filter shows the efficiency of the proposed approach, particularly when the unknown inputs are intermittent.
具有间歇未知输入的随机线性系统的变几何状态滤波
本文提出了一种用于未知输入影响下动态随机离散系统状态滤波的新方法。所提出的状态滤波方案包括一个受限对角检测滤波器,生成一组最小方差白检测信号,每个白检测信号对未知输入向量的特定分量敏感。为了在线更新未知输入解耦约束,在测试了每个未知输入的统计效果后,通过最小化状态估计误差协方差矩阵得到可变几何状态滤波。与标准未知输入卡尔曼滤波器相比,在检测非显著未知输入时,协方差优化问题出现了一个新的自由度。通过与标准未知输入卡尔曼滤波器的对比研究,证明了该方法的有效性,特别是在未知输入是间歇性的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信