Glove Word Embedding and DBSCAN algorithms for Semantic Document Clustering

Shapol M. Mohammed, Karwan Jacksi, Subhi R. M. Zeebaree
{"title":"Glove Word Embedding and DBSCAN algorithms for Semantic Document Clustering","authors":"Shapol M. Mohammed, Karwan Jacksi, Subhi R. M. Zeebaree","doi":"10.1109/ICOASE51841.2020.9436540","DOIUrl":null,"url":null,"abstract":"In the recently developed document clustering, word embedding has the primary role in constructing semantics, considering and measuring the times a specific word appears in its context. Word2vect and Glove word embedding are the two most used word embeddings in document clustering. Previous works do not consider the use of glove word embedding with DBSCAN clustering algorithm in document clustering. In this work, a preprocessing with and without stemming of Wikipedia and IMDB datasets applied to glove word embedding algorithm, then word vectors as a result are applied to the DBSCAN clustering algorithm. For the evaluation of experiments, seven metrics have been used: Silhouette average, purity, accuracy, F1, completeness, homogeneity, and NMI score. The experimental results are compared with the results of TFIDF and K-means algorithms on six datasets. The results of this work outperform the results of the TFIDF and K-means approach using the four main evaluation metrics and CPU time consuming.","PeriodicalId":126112,"journal":{"name":"2020 International Conference on Advanced Science and Engineering (ICOASE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Science and Engineering (ICOASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOASE51841.2020.9436540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In the recently developed document clustering, word embedding has the primary role in constructing semantics, considering and measuring the times a specific word appears in its context. Word2vect and Glove word embedding are the two most used word embeddings in document clustering. Previous works do not consider the use of glove word embedding with DBSCAN clustering algorithm in document clustering. In this work, a preprocessing with and without stemming of Wikipedia and IMDB datasets applied to glove word embedding algorithm, then word vectors as a result are applied to the DBSCAN clustering algorithm. For the evaluation of experiments, seven metrics have been used: Silhouette average, purity, accuracy, F1, completeness, homogeneity, and NMI score. The experimental results are compared with the results of TFIDF and K-means algorithms on six datasets. The results of this work outperform the results of the TFIDF and K-means approach using the four main evaluation metrics and CPU time consuming.
语义文档聚类的手套词嵌入和DBSCAN算法
在最近发展起来的文档聚类中,词嵌入在构建语义、考虑和度量特定词在其上下文中出现的次数方面起着主要作用。Word2vect词嵌入和Glove词嵌入是文档聚类中最常用的两种词嵌入方法。以前的工作没有考虑在文档聚类中使用手套词嵌入与DBSCAN聚类算法。在本研究中,将维基百科和IMDB数据集的预处理应用于手套词嵌入算法,然后将结果应用于DBSCAN聚类算法。为了评估实验,使用了七个指标:剪影平均值、纯度、准确性、F1、完整性、同质性和NMI评分。实验结果与TFIDF和K-means算法在6个数据集上的结果进行了比较。这项工作的结果优于使用四个主要评估指标和CPU时间消耗的TFIDF和K-means方法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信