A deep learning approach for solving Poisson’s equations

Thanh Nguyen, B. Pham, Trung T. Nguyen, B. Nguyen
{"title":"A deep learning approach for solving Poisson’s equations","authors":"Thanh Nguyen, B. Pham, Trung T. Nguyen, B. Nguyen","doi":"10.1109/KSE50997.2020.9287419","DOIUrl":null,"url":null,"abstract":"Partial differential equations (PDEs) have a lot of applications in different fields of research during the last decades. In this paper, we study a mesh-free deep learning method for solving PDE systems, especially for Poisson’s equations. Different from traditional techniques using finite volume or finite element method, we design suitable neural networks that can approximate solutions of a PDE hy formulating it as an optimization problem. To minimize a loss function, we use the gradient descent algorithm to obtain the neural networks’ optimal set of parameters. The experimental results show that the proposed methods can achieve promising results in solving three types of PDEs: Burgers’ equation, Laplace’s equation, and Poisson’s equation, where the mean square errors vary from 10-7 to 10-10.","PeriodicalId":275683,"journal":{"name":"2020 12th International Conference on Knowledge and Systems Engineering (KSE)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 12th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE50997.2020.9287419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Partial differential equations (PDEs) have a lot of applications in different fields of research during the last decades. In this paper, we study a mesh-free deep learning method for solving PDE systems, especially for Poisson’s equations. Different from traditional techniques using finite volume or finite element method, we design suitable neural networks that can approximate solutions of a PDE hy formulating it as an optimization problem. To minimize a loss function, we use the gradient descent algorithm to obtain the neural networks’ optimal set of parameters. The experimental results show that the proposed methods can achieve promising results in solving three types of PDEs: Burgers’ equation, Laplace’s equation, and Poisson’s equation, where the mean square errors vary from 10-7 to 10-10.
求解泊松方程的深度学习方法
近几十年来,偏微分方程在不同的研究领域得到了广泛的应用。在本文中,我们研究了一种求解PDE系统的无网格深度学习方法,特别是泊松方程。与传统的有限体积或有限元方法不同,我们设计了合适的神经网络,通过将其表述为优化问题来近似求解PDE。为了最小化损失函数,我们使用梯度下降算法来获得神经网络的最优参数集。实验结果表明,本文提出的方法在求解Burgers方程、Laplace方程和Poisson方程三种均方误差在10-7 ~ 10-10之间的偏微分方程时,均方误差均在10-7 ~ 10-10之间,取得了较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信