A Modified Storage Format for Accelerating SPMV

Jin Tian, Fei Wu, Guohui Zeng, Li Gong
{"title":"A Modified Storage Format for Accelerating SPMV","authors":"Jin Tian, Fei Wu, Guohui Zeng, Li Gong","doi":"10.1109/CSO.2014.106","DOIUrl":null,"url":null,"abstract":"This paper aims to study how to choose an effective storage format to accelerate sparse matrix vector product (SMVP) occurring in different numerical methods. We discuss and analyze the storage formats of SMVP which implemented on a GPU. The formats are used for hastening the solution of equations arising from numerical methods. The research in this paper can provide fast selects, which allow low storage space and make memory accesses efficiency, for numerical methods to accelerate SMVP.","PeriodicalId":174800,"journal":{"name":"2014 Seventh International Joint Conference on Computational Sciences and Optimization","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Seventh International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2014.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to study how to choose an effective storage format to accelerate sparse matrix vector product (SMVP) occurring in different numerical methods. We discuss and analyze the storage formats of SMVP which implemented on a GPU. The formats are used for hastening the solution of equations arising from numerical methods. The research in this paper can provide fast selects, which allow low storage space and make memory accesses efficiency, for numerical methods to accelerate SMVP.
一种用于加速SPMV的改进存储格式
本文旨在研究如何选择一种有效的存储格式来加速不同数值方法中的稀疏矩阵向量积(SMVP)。讨论并分析了在GPU上实现SMVP的存储格式。这些格式用于加速由数值方法引起的方程的解。本文的研究可以为数值方法加速SMVP提供快速选择,以节省存储空间和提高内存访问效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信