Bayesian Optimisation of Solver Parameters in CBMC

Chaitanya Mangla, S. Holden, Lawrence Charles Paulson
{"title":"Bayesian Optimisation of Solver Parameters in CBMC","authors":"Chaitanya Mangla, S. Holden, Lawrence Charles Paulson","doi":"10.17863/CAM.55257","DOIUrl":null,"url":null,"abstract":"Satisfiability solvers can be embedded in applications to perform specific formal reasoning tasks. CBMC, for example, is a bounded model checker for C and C++ that embeds SMT and SAT solvers to check internally generated formulae. Such solvers will be solely used to evaluate the class of formulae generated by the embedding application and therefore may benefit from domain-specific parameter tuning. We propose the use of Bayesian optimisation for this purpose, which offers a principled approach to black-box optimisation within limited resources. We demonstrate its use for optimisation of the solver embedded in CBMC specifically for a collection of test harnesses in active industrial use, for which we have achieved a significant improvement over the default parameters.","PeriodicalId":114068,"journal":{"name":"International Workshop on Satisfiability Modulo Theories","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Satisfiability Modulo Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17863/CAM.55257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Satisfiability solvers can be embedded in applications to perform specific formal reasoning tasks. CBMC, for example, is a bounded model checker for C and C++ that embeds SMT and SAT solvers to check internally generated formulae. Such solvers will be solely used to evaluate the class of formulae generated by the embedding application and therefore may benefit from domain-specific parameter tuning. We propose the use of Bayesian optimisation for this purpose, which offers a principled approach to black-box optimisation within limited resources. We demonstrate its use for optimisation of the solver embedded in CBMC specifically for a collection of test harnesses in active industrial use, for which we have achieved a significant improvement over the default parameters.
CBMC中求解器参数的贝叶斯优化
可满足性求解器可以嵌入到应用程序中,以执行特定的形式推理任务。例如,CBMC是C和c++的有界模型检查器,它嵌入SMT和SAT求解器来检查内部生成的公式。这样的求解器将仅用于评估由嵌入应用程序生成的一类公式,因此可能受益于特定领域的参数调优。我们建议为此目的使用贝叶斯优化,它提供了在有限资源内进行黑盒优化的原则方法。我们演示了它用于优化嵌入在CBMC中的求解器,特别是用于活跃工业使用的一系列测试线束,我们已经实现了对默认参数的显着改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信