QueueVadis: queuing analytics using smartphones

T. Okoshi, Yu Lu, Chetna Vig, Youngki Lee, R. Balan, Archan Misra
{"title":"QueueVadis: queuing analytics using smartphones","authors":"T. Okoshi, Yu Lu, Chetna Vig, Youngki Lee, R. Balan, Archan Misra","doi":"10.1145/2737095.2737120","DOIUrl":null,"url":null,"abstract":"We present QueueVadis, a system that addresses the problem of estimating, in real-time, the properties of queues at commonplace urban locations, such as coffee shops, taxi stands and movie theaters. Abjuring the use of any queuing-specific infrastructure sensors, QueueVadis uses participatory mobile sensing to detect both (i) the individual-level queuing episodes for any arbitrarily-shaped queue (by a characteristic locomotive signature of short bursts of \"shuffling forward\" between periods of \"standing\") and (ii) the aggregate-level queue properties (such as expected wait or service times) via appropriate statistical aggregation of multi-person data. Moreover, for venues where multiple queues are too close to be separated via location estimates, QueueVadis also uses a novel disambiguation technique to separate users into multiple distinct queues. User studies, performed with 138 cumulative total users observed at 23 different real-world queues across Singapore and Japan, show that QueueVadis is able to (a) identify all individual queuing episodes, (b) predict service and wait times fairly accurately (with median estimation errors in the 10%--20% range), independent of the queue's shape, (c) separate users in multiple proximate queues with close to 80% accuracy and (d) provide reasonable estimates when the participation rate (the fraction of QueueVadis-equipped people in the queue) is modest.","PeriodicalId":318992,"journal":{"name":"Proceedings of the 14th International Conference on Information Processing in Sensor Networks","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th International Conference on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737095.2737120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We present QueueVadis, a system that addresses the problem of estimating, in real-time, the properties of queues at commonplace urban locations, such as coffee shops, taxi stands and movie theaters. Abjuring the use of any queuing-specific infrastructure sensors, QueueVadis uses participatory mobile sensing to detect both (i) the individual-level queuing episodes for any arbitrarily-shaped queue (by a characteristic locomotive signature of short bursts of "shuffling forward" between periods of "standing") and (ii) the aggregate-level queue properties (such as expected wait or service times) via appropriate statistical aggregation of multi-person data. Moreover, for venues where multiple queues are too close to be separated via location estimates, QueueVadis also uses a novel disambiguation technique to separate users into multiple distinct queues. User studies, performed with 138 cumulative total users observed at 23 different real-world queues across Singapore and Japan, show that QueueVadis is able to (a) identify all individual queuing episodes, (b) predict service and wait times fairly accurately (with median estimation errors in the 10%--20% range), independent of the queue's shape, (c) separate users in multiple proximate queues with close to 80% accuracy and (d) provide reasonable estimates when the participation rate (the fraction of QueueVadis-equipped people in the queue) is modest.
QueueVadis:使用智能手机进行排队分析
我们介绍了QueueVadis,这是一个系统,用于实时估计常见城市地点(如咖啡店、出租车站和电影院)队列的属性。放弃使用任何队列特定的基础设施传感器,QueueVadis使用参与式移动传感来检测(i)任何任意形状队列的个人级别排队事件(通过在“站立”期间“向前移动”的短爆发的特征机车签名)和(ii)通过适当的多人数据统计聚合来检测聚合级别队列属性(如预期等待或服务时间)。此外,对于多个队列太近而无法通过位置估计分离的场所,QueueVadis还使用了一种新的消歧技术,将用户分离到多个不同的队列中。在新加坡和日本的23个不同的现实世界队列中,对138个累计总用户进行的用户研究表明,QueueVadis能够(a)识别所有单独的排队事件,(b)相当准确地预测服务和等待时间(中位数估计误差在10%- 20%范围内),与队列形状无关。(c)以接近80%的准确率将用户划分在多个近似队列中;(d)在参与率(队列中配备queuevadis的人的比例)较低时提供合理的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信