Modeling of reactive sputtering and evaporation in a hot-target magnetron discharge

D. Kolodko, S. Sorokin, A. Kaziev
{"title":"Modeling of reactive sputtering and evaporation in a hot-target magnetron discharge","authors":"D. Kolodko, S. Sorokin, A. Kaziev","doi":"10.56761/efre2022.c2-o-047203","DOIUrl":null,"url":null,"abstract":"We theoretically consider the joint influence of hot-target effects and the pulsed nature of the discharge on the state of the target surface. We enhance the previously modified time-dependent Berg model by taking into account the evaporation of target material as well as the influence of target temperature on the rate of chemical reactions on its surface. The system of equations describes the state of the target in terms of poisoned area fractions θ1 and θ2, where index 1 corresponds to the monoatomic surface layer, and index 2 – to the layer beneath the surface (subsurface layer). The processes of chemisorption on target surface, sputtering of reactive gas atoms from target, implantation of reactive gas ions to the sub-surface layer, material evaporation, and transfer between the layers are considered. A separate equation connects the atomic fluxes of reactive gas associated with target and substrate surfaces with the volumetric characteristics, such as gas injection rate and pumping speed. The system of equations is solved numerically, and test results are presented.","PeriodicalId":156877,"journal":{"name":"8th International Congress on Energy Fluxes and Radiation Effects","volume":"2999 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th International Congress on Energy Fluxes and Radiation Effects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56761/efre2022.c2-o-047203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We theoretically consider the joint influence of hot-target effects and the pulsed nature of the discharge on the state of the target surface. We enhance the previously modified time-dependent Berg model by taking into account the evaporation of target material as well as the influence of target temperature on the rate of chemical reactions on its surface. The system of equations describes the state of the target in terms of poisoned area fractions θ1 and θ2, where index 1 corresponds to the monoatomic surface layer, and index 2 – to the layer beneath the surface (subsurface layer). The processes of chemisorption on target surface, sputtering of reactive gas atoms from target, implantation of reactive gas ions to the sub-surface layer, material evaporation, and transfer between the layers are considered. A separate equation connects the atomic fluxes of reactive gas associated with target and substrate surfaces with the volumetric characteristics, such as gas injection rate and pumping speed. The system of equations is solved numerically, and test results are presented.
热靶磁控管放电中反应溅射和蒸发的建模
从理论上考虑了热靶效应和放电脉冲特性对靶表面状态的共同影响。我们通过考虑目标材料的蒸发以及目标温度对其表面化学反应速率的影响,增强了先前修改的时变Berg模型。方程组用中毒面积分数θ1和θ2来描述目标的状态,其中指标1对应于单原子表面层,指标2 -对应于表面下的层(次表面层)。考虑了靶表面的化学吸附、靶表面反应性气体原子溅射、反应性气体离子注入亚表面层、材料蒸发和层间转移等过程。一个单独的方程将与靶和衬底表面相关的反应气体的原子通量与体积特性(如气体注入速率和抽速)联系起来。对方程组进行了数值求解,并给出了试验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信