Planar silicon metamaterial lenslet arrays for millimeter-wavelength imaging

C. Mckenney, J. Austermann, J. Beall, N. Halverson, J. Hubmayr, G. Jaehnig, G. Pisano, Sarah A. Stevenson, A. Suzuki, Jonathan A. Thompson
{"title":"Planar silicon metamaterial lenslet arrays for millimeter-wavelength imaging","authors":"C. Mckenney, J. Austermann, J. Beall, N. Halverson, J. Hubmayr, G. Jaehnig, G. Pisano, Sarah A. Stevenson, A. Suzuki, Jonathan A. Thompson","doi":"10.1117/12.2565532","DOIUrl":null,"url":null,"abstract":"Large imaging arrays of detectors at millimeter and submillimeter wavelengths have applications that include measurements of the faint polarization signal in the Cosmic Microwave Background (CMB), and submillimeter astrophysics. We are developing planar lenslet arrays for millimeter-wavelength imaging using metamaterials microlithically fabricated using silicon wafers. This metamaterial technology has many potential advantages compared to conventional hemispherical lenslet arrays, including high precision and homogeneity, planar integrated anti-reflection layers, and a coefficient of thermal expansion matched to the silicon detector wafer. Here we describe the design process for a gradient-index (GRIN) metamaterial lenslet using metal-mesh patterned on silicon and a combination of metal-mesh and etched-hole metamaterial anti-reflection layers. We optimize the design using a bulk-material model to rapidly simulate and iterate on the lenslet design. We fabricated prototype GRIN metamaterial lenslet array and mounted it on a Polarbear/Simons Array 90/150~GHz band transition edge sensor (TES) bolometer detector array with sinuous planar antennas. Beam measurements of a prototype lenslet array agree reasonably well with the model simulations. We plan to further optimize the design and combine it with a broadband anti-reflection coating to achieve operation over 70--350~GHz bandwidth.","PeriodicalId":393026,"journal":{"name":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2565532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Large imaging arrays of detectors at millimeter and submillimeter wavelengths have applications that include measurements of the faint polarization signal in the Cosmic Microwave Background (CMB), and submillimeter astrophysics. We are developing planar lenslet arrays for millimeter-wavelength imaging using metamaterials microlithically fabricated using silicon wafers. This metamaterial technology has many potential advantages compared to conventional hemispherical lenslet arrays, including high precision and homogeneity, planar integrated anti-reflection layers, and a coefficient of thermal expansion matched to the silicon detector wafer. Here we describe the design process for a gradient-index (GRIN) metamaterial lenslet using metal-mesh patterned on silicon and a combination of metal-mesh and etched-hole metamaterial anti-reflection layers. We optimize the design using a bulk-material model to rapidly simulate and iterate on the lenslet design. We fabricated prototype GRIN metamaterial lenslet array and mounted it on a Polarbear/Simons Array 90/150~GHz band transition edge sensor (TES) bolometer detector array with sinuous planar antennas. Beam measurements of a prototype lenslet array agree reasonably well with the model simulations. We plan to further optimize the design and combine it with a broadband anti-reflection coating to achieve operation over 70--350~GHz bandwidth.
用于毫米波成像的平面硅超材料透镜阵列
毫米和亚毫米波长的大型成像阵列探测器的应用包括测量宇宙微波背景(CMB)中的微弱偏振信号,以及亚毫米天体物理学。我们正在开发用于毫米波长成像的平面透镜阵列,使用硅片微晶制造的超材料。与传统的半球形小透镜阵列相比,这种超材料技术具有许多潜在的优势,包括高精度和均匀性,平面集成抗反射层,以及与硅探测器晶圆匹配的热膨胀系数。在这里,我们描述了一个梯度折射率(GRIN)超材料透镜的设计过程,该透镜采用了硅上的金属网格和金属网格与蚀刻孔超材料增透层的组合。我们使用本体材料模型来优化设计,以快速模拟和迭代透镜设计。我们制作了GRIN超材料透镜阵列原型,并将其安装在具有弯曲平面天线的90/150~GHz波段过渡边缘传感器(TES)测热计探测器阵列上。原型透镜阵列的波束测量结果与模型模拟结果吻合较好。我们计划进一步优化设计,并将其与宽带抗反射涂层相结合,以实现超过70—350~GHz带宽的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信