Fatigue Fracture of an Aluminum Alloy 7075-T73 Landing-Gear Torque Arm

{"title":"Fatigue Fracture of an Aluminum Alloy 7075-T73 Landing-Gear Torque Arm","authors":"","doi":"10.31399/asm.fach.aero.c0046146","DOIUrl":null,"url":null,"abstract":"\n The torque-arm assembly (aluminum alloy 7075-T73) for an aircraft nose landing gear failed after 22,779 simulated flights. The part, made from an aluminum alloy 7075-T73 forging, had an expected life of 100,000 simulated flights. Initial study of the fracture surfaces indicated that the primary fracture initiated from multiple origins on both sides of a lubrication hole that extended from the outer surface to the bore of a lug in two cadmium-plated flanged bushings made of copper alloy C63000 (aluminum bronze) that were press-fitted into each bored hole in the lug. Sectioning and 2x metallographic analysis showed small fatigue-type cracks in the hole adjacent to the origin of primary fracture. Hardness and electrical conductivity were typical for aluminum alloy 7075. This evidence supported the conclusion that the arm failed in fatigue cracking that initiated on each side of the lubrication hole since no material defects were found at the failure origin. Recommendations included redesign of the lubrication hole, shot peeing of the faces of the lug for added resistance to fatigue failure, and changing of the forging material to aluminum alloy 7175-T736 for its higher mechanical properties.","PeriodicalId":326464,"journal":{"name":"ASM Failure Analysis Case Histories: Air and Spacecraft","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Air and Spacecraft","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.aero.c0046146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The torque-arm assembly (aluminum alloy 7075-T73) for an aircraft nose landing gear failed after 22,779 simulated flights. The part, made from an aluminum alloy 7075-T73 forging, had an expected life of 100,000 simulated flights. Initial study of the fracture surfaces indicated that the primary fracture initiated from multiple origins on both sides of a lubrication hole that extended from the outer surface to the bore of a lug in two cadmium-plated flanged bushings made of copper alloy C63000 (aluminum bronze) that were press-fitted into each bored hole in the lug. Sectioning and 2x metallographic analysis showed small fatigue-type cracks in the hole adjacent to the origin of primary fracture. Hardness and electrical conductivity were typical for aluminum alloy 7075. This evidence supported the conclusion that the arm failed in fatigue cracking that initiated on each side of the lubrication hole since no material defects were found at the failure origin. Recommendations included redesign of the lubrication hole, shot peeing of the faces of the lug for added resistance to fatigue failure, and changing of the forging material to aluminum alloy 7175-T736 for its higher mechanical properties.
7075-T73铝合金起落架扭矩臂的疲劳断裂
一架飞机前起落架的扭力臂组件(7075-T73铝合金)在22,779次模拟飞行后失效。该部件由7075-T73铝合金锻件制成,预计使用寿命为10万次模拟飞行。对裂缝表面的初步研究表明,主要裂缝是从润滑孔两侧的多个起点开始的,润滑孔从外表面延伸到凸耳的孔,两个镀镉的法兰衬套由C63000铜合金(铝青铜)制成,压入凸耳的每个钻孔孔中。断面和2倍金相分析表明,在原生断口附近的孔洞中存在细小的疲劳型裂纹。硬度和电导率是铝合金7075的典型。这一证据支持了这样的结论:由于在失效原点处没有发现材料缺陷,因此在润滑孔的每一侧都开始出现疲劳裂纹,因此臂失效。建议包括重新设计润滑孔,对凸耳表面进行喷砂以增加抗疲劳失效的能力,并将锻造材料改为7175-T736铝合金,以获得更高的机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信