{"title":"Prediksi Kedatangan Turis Menggunakan Algoritma Weighted Exponential Moving Average","authors":"Sherly Florencia, Alethea Suryadibrata","doi":"10.31937/TI.V12I2.1831","DOIUrl":null,"url":null,"abstract":"Tourism is an important factor for the development of a country. Tourism can be used as a promotion to introduce natural beauty and cultural uniqueness. Government needs to predict how many tourists will come every year to do a planning. Therefore, an application is needed to help to predict the arrival of tourists in each country. In this paper, we use Weighted Exponential Moving Average (WEMA) method to predict the arrival of tourist, tourism expenditure in the country, and departure using data from 2008 to 2018. Error measurement is calculated using the Mean Absolute Percentage Error (MAPE). The result shows that the lowest average MAPE on arrival data with span 2 is at 3.28. The lowest average MAPE on tourism expenditure data with span 2 is at 3.99%. The result shows that the lowest average MAPE on departure data with span 2 is at 3.63%.","PeriodicalId":347196,"journal":{"name":"Ultimatics : Jurnal Teknik Informatika","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultimatics : Jurnal Teknik Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31937/TI.V12I2.1831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Tourism is an important factor for the development of a country. Tourism can be used as a promotion to introduce natural beauty and cultural uniqueness. Government needs to predict how many tourists will come every year to do a planning. Therefore, an application is needed to help to predict the arrival of tourists in each country. In this paper, we use Weighted Exponential Moving Average (WEMA) method to predict the arrival of tourist, tourism expenditure in the country, and departure using data from 2008 to 2018. Error measurement is calculated using the Mean Absolute Percentage Error (MAPE). The result shows that the lowest average MAPE on arrival data with span 2 is at 3.28. The lowest average MAPE on tourism expenditure data with span 2 is at 3.99%. The result shows that the lowest average MAPE on departure data with span 2 is at 3.63%.