Principal Component Analysis Based Polynomial Chaos Expansion Regression of Leaf Area Index from Polsar Imagery

M. F. Celik, E. Erten
{"title":"Principal Component Analysis Based Polynomial Chaos Expansion Regression of Leaf Area Index from Polsar Imagery","authors":"M. F. Celik, E. Erten","doi":"10.1109/IGARSS47720.2021.9554929","DOIUrl":null,"url":null,"abstract":"Predicting biophysical parameters with high accuracy and fast speed based on remote sensing-based modeling is an attractive topic. In this context, the revisit time, coverage, and illumination condition in-dependency make the Polarimetric Synthetic Aperture Radar (PoISAR) data is an attractive tool. In this paper, one of the most studied biophysical parameters, Leaf Area Index (LAI), is chosen to assess Polynomial Chaos Expansion (PCE) regression, commonly used metamodeling due to its precise and rapid approximation performance. Experimental analysis based on AgriSAR 2009 campaign, including oat and canola, is given to validate the PCE in the regression. According to the accuracy analysis, the Pearson correlation of 88% and 95% for oat and canola, respectively, were achieved.","PeriodicalId":315312,"journal":{"name":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS47720.2021.9554929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting biophysical parameters with high accuracy and fast speed based on remote sensing-based modeling is an attractive topic. In this context, the revisit time, coverage, and illumination condition in-dependency make the Polarimetric Synthetic Aperture Radar (PoISAR) data is an attractive tool. In this paper, one of the most studied biophysical parameters, Leaf Area Index (LAI), is chosen to assess Polynomial Chaos Expansion (PCE) regression, commonly used metamodeling due to its precise and rapid approximation performance. Experimental analysis based on AgriSAR 2009 campaign, including oat and canola, is given to validate the PCE in the regression. According to the accuracy analysis, the Pearson correlation of 88% and 95% for oat and canola, respectively, were achieved.
基于主成分分析的Polsar影像叶面积指数多项式混沌展开回归
基于遥感建模的生物物理参数高精度快速预测是一个有吸引力的研究课题。在这种情况下,重访时间、覆盖范围和光照条件的相关性使得极化合成孔径雷达(PoISAR)数据成为一种有吸引力的工具。本文选择研究最多的生物物理参数之一叶面积指数(LAI)来评估多项式混沌展开(PCE)回归,该回归因其精确和快速的近似性能而被广泛用于元建模。以AgriSAR 2009为研究对象,以燕麦和油菜为研究对象,对PCE的回归结果进行了验证。准确度分析表明,燕麦和菜籽油的Pearson相关性分别为88%和95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信