Evaluation of Split-Brain Autoencoders for High-Resolution Remote Sensing Scene Classification

Vladan Stojnić, V. Risojevic
{"title":"Evaluation of Split-Brain Autoencoders for High-Resolution Remote Sensing Scene Classification","authors":"Vladan Stojnić, V. Risojevic","doi":"10.23919/ELMAR.2018.8534634","DOIUrl":null,"url":null,"abstract":"Self-supervised methods are interesting for remote sensing because there are not many human labeled datasets available, but there is practically unlimited amount of data that can be used for self-supervised learning. In this paper we analyze the use of split-brain autoencoders in the context of remote sensing image classification. Weinvestigate the importance of training set size, choice of color space and size of the model to the classification accuracy. We show that even with small amount of unlabeled training images, if we finetune the weights learned by the autoencoder, we can achieve almost state of the art results of 89.27% on AID dataset.","PeriodicalId":175742,"journal":{"name":"2018 International Symposium ELMAR","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium ELMAR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELMAR.2018.8534634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Self-supervised methods are interesting for remote sensing because there are not many human labeled datasets available, but there is practically unlimited amount of data that can be used for self-supervised learning. In this paper we analyze the use of split-brain autoencoders in the context of remote sensing image classification. Weinvestigate the importance of training set size, choice of color space and size of the model to the classification accuracy. We show that even with small amount of unlabeled training images, if we finetune the weights learned by the autoencoder, we can achieve almost state of the art results of 89.27% on AID dataset.
用于高分辨率遥感场景分类的裂脑自编码器评价
自监督方法对于遥感来说很有趣,因为可用的人类标记数据集不多,但实际上可以用于自监督学习的数据量是无限的。本文分析了裂脑自编码器在遥感图像分类中的应用。我们研究了训练集大小、颜色空间选择和模型大小对分类精度的重要性。我们表明,即使使用少量未标记的训练图像,如果我们微调自编码器学习的权重,我们可以在AID数据集上获得几乎89.27%的最新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信