Optimum path forest classifier applied to laryngeal pathology detection

J. Papa, A. A. Spadotto, A. Falcão, J. Pereira
{"title":"Optimum path forest classifier applied to laryngeal pathology detection","authors":"J. Papa, A. A. Spadotto, A. Falcão, J. Pereira","doi":"10.1109/IWSSIP.2008.4604414","DOIUrl":null,"url":null,"abstract":"Optimum path forest-based classifiers are a novel approach for supervised pattern recognition. The OPF classifier differs from traditional approaches by not estimating probability density functions of the classes neither assuming samples linearity, and creates a discrete optimal partition of the feature space, in which the decision boundary is obtained by the influence zones of the most representative samples of the training set. Due to the large number of applications in biomedical signal processing involving pattern recognition techniques, specially voice disorders identification, we propose here the laryngeal pathology detection by means of OPF. Experiments were performed in three public datasets against SVM, and a comparison in terms of accuracy rates and execution times was also regarded.","PeriodicalId":322045,"journal":{"name":"2008 15th International Conference on Systems, Signals and Image Processing","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 15th International Conference on Systems, Signals and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2008.4604414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Optimum path forest-based classifiers are a novel approach for supervised pattern recognition. The OPF classifier differs from traditional approaches by not estimating probability density functions of the classes neither assuming samples linearity, and creates a discrete optimal partition of the feature space, in which the decision boundary is obtained by the influence zones of the most representative samples of the training set. Due to the large number of applications in biomedical signal processing involving pattern recognition techniques, specially voice disorders identification, we propose here the laryngeal pathology detection by means of OPF. Experiments were performed in three public datasets against SVM, and a comparison in terms of accuracy rates and execution times was also regarded.
最优路径森林分类器在喉部病理检测中的应用
基于最优路径森林的分类器是一种新的监督模式识别方法。OPF分类器与传统方法的不同之处在于,它既不估计类的概率密度函数,也不假设样本的线性,而是对特征空间进行离散的最优划分,其中决策边界由训练集中最具代表性样本的影响区域获得。由于模式识别技术在生物医学信号处理中的大量应用,特别是语音障碍的识别,我们在这里提出了基于OPF的喉部病理检测。在三个公开的数据集上对SVM进行了实验,并对准确率和执行次数进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信