Real-Time Face Detection and Tracking Utilising OpenMP and ROS

E. Tusa, A. Akbarinia, Raquel Gil Rodríguez, Corina Barbalata
{"title":"Real-Time Face Detection and Tracking Utilising OpenMP and ROS","authors":"E. Tusa, A. Akbarinia, Raquel Gil Rodríguez, Corina Barbalata","doi":"10.1109/APCASE.2015.39","DOIUrl":null,"url":null,"abstract":"The first requisite of a robot to succeed in social interactions is accurate human localisation, i.e. Subject detection and tracking. Later, it is estimated whether an interaction partner seeks attention, for example by interpreting the position and orientation of the body. In computer vision, these cues usually are obtained in colour images, whose qualities are degraded in ill illuminated social scenes. In these scenarios depth sensors offer a richer representation. Therefore, it is important to combine colour and depth information. The second aspect that plays a fundamental role in the acceptance of social robots is their real-time-ability. Processing colour and depth images is computationally demanding. To overcome this we propose a parallelisation strategy of face detection and tracking based on two different architectures: message passing and shared memory. Our results demonstrate high accuracy in low computational time, processing nine times more number of frames in a parallel implementation. This provides a real-time social robot interaction.","PeriodicalId":235698,"journal":{"name":"2015 Asia-Pacific Conference on Computer Aided System Engineering","volume":"08 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Asia-Pacific Conference on Computer Aided System Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCASE.2015.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The first requisite of a robot to succeed in social interactions is accurate human localisation, i.e. Subject detection and tracking. Later, it is estimated whether an interaction partner seeks attention, for example by interpreting the position and orientation of the body. In computer vision, these cues usually are obtained in colour images, whose qualities are degraded in ill illuminated social scenes. In these scenarios depth sensors offer a richer representation. Therefore, it is important to combine colour and depth information. The second aspect that plays a fundamental role in the acceptance of social robots is their real-time-ability. Processing colour and depth images is computationally demanding. To overcome this we propose a parallelisation strategy of face detection and tracking based on two different architectures: message passing and shared memory. Our results demonstrate high accuracy in low computational time, processing nine times more number of frames in a parallel implementation. This provides a real-time social robot interaction.
利用OpenMP和ROS的实时人脸检测和跟踪
机器人成功进行社交互动的第一个必要条件是准确的人类定位,即目标检测和跟踪。然后,通过解读身体的位置和方向,评估互动伙伴是否在寻求注意。在计算机视觉中,这些线索通常是在彩色图像中获得的,在光线不足的社会场景中,这些图像的质量会下降。在这些场景中,深度传感器提供了更丰富的表示。因此,将颜色和深度信息结合起来是很重要的。在人们接受社交机器人的过程中起着重要作用的第二个方面是它们的实时性。处理颜色和深度图像在计算上要求很高。为了克服这个问题,我们提出了一种基于两种不同架构的人脸检测和跟踪并行化策略:消息传递和共享内存。我们的结果表明,在低计算时间内具有很高的精度,在并行实现中处理的帧数增加了9倍。这提供了一个实时的社会机器人互动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信