One of these words is not like the other: a reproduction of outlier identification using non-contextual word representations

Jesper Brink Andersen, Mikkel Bak Bertelsen, Mikkel Hørby Schou, Manuel R. Ciosici, I. Assent
{"title":"One of these words is not like the other: a reproduction of outlier identification using non-contextual word representations","authors":"Jesper Brink Andersen, Mikkel Bak Bertelsen, Mikkel Hørby Schou, Manuel R. Ciosici, I. Assent","doi":"10.18653/v1/2020.eval4nlp-1.12","DOIUrl":null,"url":null,"abstract":"Word embeddings are an active topic in the NLP research community. State-of-the-art neural models achieve high performance on downstream tasks, albeit at the cost of computationally expensive training. Cost aware solutions require cheaper models that still achieve good performance. We present several reproduction studies of intrinsic evaluation tasks that evaluate non-contextual word representations in multiple languages. Furthermore, we present 50-8-8, a new data set for the outlier identification task, which avoids limitations of the original data set, such as ambiguous words, infrequent words, and multi-word tokens, while increasing the number of test cases. The data set is expanded to contain semantic and syntactic tests and is multilingual (English, German, and Italian). We provide an in-depth analysis of word embedding models with a range of hyper-parameters. Our analysis shows the suitability of different models and hyper-parameters for different tasks and the greater difficulty of representing German and Italian languages.","PeriodicalId":448066,"journal":{"name":"Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.eval4nlp-1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Word embeddings are an active topic in the NLP research community. State-of-the-art neural models achieve high performance on downstream tasks, albeit at the cost of computationally expensive training. Cost aware solutions require cheaper models that still achieve good performance. We present several reproduction studies of intrinsic evaluation tasks that evaluate non-contextual word representations in multiple languages. Furthermore, we present 50-8-8, a new data set for the outlier identification task, which avoids limitations of the original data set, such as ambiguous words, infrequent words, and multi-word tokens, while increasing the number of test cases. The data set is expanded to contain semantic and syntactic tests and is multilingual (English, German, and Italian). We provide an in-depth analysis of word embedding models with a range of hyper-parameters. Our analysis shows the suitability of different models and hyper-parameters for different tasks and the greater difficulty of representing German and Italian languages.
这些单词中的一个不像另一个:使用非上下文单词表示再现离群值识别
词嵌入是NLP研究界的一个活跃话题。最先进的神经模型在下游任务上实现了高性能,尽管以计算昂贵的训练成本为代价。注重成本的解决方案需要更便宜的模型,但仍能实现良好的性能。我们提出了几项内在评价任务的再现研究,这些任务评估了多种语言中的非上下文单词表征。此外,我们提出了一个新的异常点识别数据集50-8-8,它避免了原始数据集的限制,如模糊词、不频繁词和多词标记,同时增加了测试用例的数量。数据集被扩展为包含语义和句法测试,并且是多语言的(英语、德语和意大利语)。我们对具有一系列超参数的词嵌入模型进行了深入分析。我们的分析表明,不同的模型和超参数适用于不同的任务,并且表示德语和意大利语的难度更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信