{"title":"Making Meaningful Restaurant Recommendations At OpenTable","authors":"Sudeep Das","doi":"10.1145/2792838.2799501","DOIUrl":null,"url":null,"abstract":"At OpenTable, recommendations play a key role in connecting diners with restaurants. The act of recommending a restaurant to a diner relies heavily on aligning everything we know about the restaurant with everything we can infer about the diner. Our methods go beyond using the diner-restaurant interaction history as the sole input -- we use click and search data, the metadata of restaurants, as well as insights gleaned from reviews, together with any contextual information to make meaningful recommendations. In this talk, I will highlight the main aspects of our recommendation stack built with Scala using Apache Spark.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"1839 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2799501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
At OpenTable, recommendations play a key role in connecting diners with restaurants. The act of recommending a restaurant to a diner relies heavily on aligning everything we know about the restaurant with everything we can infer about the diner. Our methods go beyond using the diner-restaurant interaction history as the sole input -- we use click and search data, the metadata of restaurants, as well as insights gleaned from reviews, together with any contextual information to make meaningful recommendations. In this talk, I will highlight the main aspects of our recommendation stack built with Scala using Apache Spark.