Stabilization of maximal metric trees

M. Gouda, Marco Schneider
{"title":"Stabilization of maximal metric trees","authors":"M. Gouda, Marco Schneider","doi":"10.1109/SLFSTB.1999.777481","DOIUrl":null,"url":null,"abstract":"We present a formal definition of routing metrics and provide the necessary and sufficient conditions for a routing metric to be optimizable along a tree. Based upon these conditions, we present a generalization of the shortest path tree which we call the \"maximal metric tree\". We present a stabilizing protocol for constructing maximal metric trees. Our protocol demonstrates that the distance-vector routing paradigm may be extended to any metric that is optimizable along a tree and in a self-stabilizing manner. Examples of minimal metric trees include shortest path trees (distance vector), depth first search trees, maximum flow trees, and reliability trees.","PeriodicalId":395768,"journal":{"name":"Proceedings 19th IEEE International Conference on Distributed Computing Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 19th IEEE International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLFSTB.1999.777481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We present a formal definition of routing metrics and provide the necessary and sufficient conditions for a routing metric to be optimizable along a tree. Based upon these conditions, we present a generalization of the shortest path tree which we call the "maximal metric tree". We present a stabilizing protocol for constructing maximal metric trees. Our protocol demonstrates that the distance-vector routing paradigm may be extended to any metric that is optimizable along a tree and in a self-stabilizing manner. Examples of minimal metric trees include shortest path trees (distance vector), depth first search trees, maximum flow trees, and reliability trees.
极大度量树的稳定性
给出了路由度量的形式化定义,并给出了路由度量沿树可优化的充分必要条件。基于这些条件,我们提出了最短路径树的一种推广,我们称之为“极大度量树”。提出了一种构造极大度量树的稳定协议。我们的协议表明,距离矢量路由范式可以扩展到任何可沿着树和自稳定的方式进行优化的度量。最小度量树的例子包括最短路径树(距离向量)、深度优先搜索树、最大流量树和可靠性树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信