High-Quality Prediction of Tourist Movements using Temporal Trajectories in Graphs

Shima Moghtasedi, Cristina Ioana Muntean, F. M. Nardini, R. Grossi, Andrea Marino
{"title":"High-Quality Prediction of Tourist Movements using Temporal Trajectories in Graphs","authors":"Shima Moghtasedi, Cristina Ioana Muntean, F. M. Nardini, R. Grossi, Andrea Marino","doi":"10.1109/ASONAM49781.2020.9381450","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of predicting the next position of a tourist given his history. In particular, we propose a model to identify the next point of interest that a tourist will visit in the future, by making use of similarity between trajectories on a graph and taking into account the spatial-temporal aspect of trajectories. We compare our method with a well-known machine learning-based technique, as well as with a popularity baseline, using three public real-world datasets. Our experimental results show that our technique outperforms state-of-the-art machine learning-based methods effectively, by providing at least twice more accurate results.","PeriodicalId":196317,"journal":{"name":"2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM49781.2020.9381450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we study the problem of predicting the next position of a tourist given his history. In particular, we propose a model to identify the next point of interest that a tourist will visit in the future, by making use of similarity between trajectories on a graph and taking into account the spatial-temporal aspect of trajectories. We compare our method with a well-known machine learning-based technique, as well as with a popularity baseline, using three public real-world datasets. Our experimental results show that our technique outperforms state-of-the-art machine learning-based methods effectively, by providing at least twice more accurate results.
利用图中的时空轨迹对游客流动进行高质量预测
在本文中,我们研究了根据游客的历史记录预测其下一个位置的问题。特别是,我们提出了一个模型,通过利用图上轨迹之间的相似性,并考虑到轨迹的时空方面,来识别游客未来将访问的下一个兴趣点。我们利用三个公开的真实数据集,将我们的方法与一种著名的基于机器学习的技术以及一种流行基线进行了比较。实验结果表明,我们的技术有效地超越了最先进的基于机器学习的方法,至少比它们高出两倍的精确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信