Side effect machines for quaternary edit metric decoding

J. A. Brown, S. Houghten, D. Ashlock
{"title":"Side effect machines for quaternary edit metric decoding","authors":"J. A. Brown, S. Houghten, D. Ashlock","doi":"10.1109/CIBCB.2010.5510422","DOIUrl":null,"url":null,"abstract":"DNA edit metric codes are used as labels to track the origin of sequence data. This study is the first to treat sophisticated decoders for these error-correcting codes. Side effect machines can provide efficient decoding algorithms for such codes. Two methods for automatically producing decoding algorithms are presented. Side Effect Machines (SEMs), generalizations of finite state automata, are used in both. Single Classifier Machines (SCMs) use a single side effect machine to classify all words within a code. Locking Side Effect Machines (LSEMs) use multiple side effect machines to create a tree structured iterated classification. This study examines these techniques and provides new decoders for existing codes. Presented are ideas for best practises for the creation of these two types of new edit metric decoders. Codes of the form (n,M,d)4 are used in testing due to their suitability for bioinformatics problems. A group of (12, 54–56, 7)4 codes are used as an example of the process.","PeriodicalId":340637,"journal":{"name":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2010.5510422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

DNA edit metric codes are used as labels to track the origin of sequence data. This study is the first to treat sophisticated decoders for these error-correcting codes. Side effect machines can provide efficient decoding algorithms for such codes. Two methods for automatically producing decoding algorithms are presented. Side Effect Machines (SEMs), generalizations of finite state automata, are used in both. Single Classifier Machines (SCMs) use a single side effect machine to classify all words within a code. Locking Side Effect Machines (LSEMs) use multiple side effect machines to create a tree structured iterated classification. This study examines these techniques and provides new decoders for existing codes. Presented are ideas for best practises for the creation of these two types of new edit metric decoders. Codes of the form (n,M,d)4 are used in testing due to their suitability for bioinformatics problems. A group of (12, 54–56, 7)4 codes are used as an example of the process.
四元编辑码解码的副作用机
DNA编辑度量码被用作标记来跟踪序列数据的来源。这项研究是第一个处理这些纠错码的复杂解码器。副作用机可以为这类代码提供有效的解码算法。提出了两种自动生成解码算法的方法。副作用机(SEMs)是有限状态自动机的推广,在两者中都有使用。单一分类机(SCMs)使用单一的副作用机器对代码中的所有单词进行分类。锁定副作用机(lsem)使用多个副作用机来创建树结构的迭代分类。本研究考察了这些技术,并为现有代码提供了新的解码器。本文介绍了创建这两种类型的新编辑度量解码器的最佳实践。(n,M,d)4形式的代码用于测试,因为它们适合于生物信息学问题。一组(12,54 - 56,7)4代码被用作该过程的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信