Towards the Design of Systolic Genetic Search

M. Pedemonte, E. Alba, F. Luna
{"title":"Towards the Design of Systolic Genetic Search","authors":"M. Pedemonte, E. Alba, F. Luna","doi":"10.1109/IPDPSW.2012.220","DOIUrl":null,"url":null,"abstract":"This paper elaborates on a new, fresh parallel optimization algorithm specially engineered to run on Graphic Processing Units (GPUs). The underlying operation relates to Systolic Computation. The algorithm, called Systolic Genetic Search (SGS) is based on the synchronous circulation of solutions through a grid of processing units and tries to profit from the parallel architecture of GPUs. The proposed model has shown to outperform a random search and two genetic algorithms for solving the Knapsack Problem over a set of increasingly sized instances. Additionally, the parallel implementation of SGS on a GeForce GTX 480 graphics processing unit (GPU), obtaining a runtime reduction up to 35 times.","PeriodicalId":378335,"journal":{"name":"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2012.220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper elaborates on a new, fresh parallel optimization algorithm specially engineered to run on Graphic Processing Units (GPUs). The underlying operation relates to Systolic Computation. The algorithm, called Systolic Genetic Search (SGS) is based on the synchronous circulation of solutions through a grid of processing units and tries to profit from the parallel architecture of GPUs. The proposed model has shown to outperform a random search and two genetic algorithms for solving the Knapsack Problem over a set of increasingly sized instances. Additionally, the parallel implementation of SGS on a GeForce GTX 480 graphics processing unit (GPU), obtaining a runtime reduction up to 35 times.
心脏收缩基因搜索设计的探讨
本文详细阐述了一种新的、新颖的并行优化算法,专门用于图形处理单元(gpu)上的运行。底层操作与收缩计算有关。这种算法被称为收缩遗传搜索(SGS),它是基于解决方案通过处理单元网格的同步循环,并试图从gpu的并行架构中获利。在一组越来越大的实例上,所提出的模型在解决背包问题上的表现优于随机搜索和两种遗传算法。此外,在GeForce GTX 480图形处理单元(GPU)上并行实现SGS,可将运行时间减少多达35倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信