Impacts of CMEs on Earth Based on Logistic Regression and Recommendation Algorithm

Yurong Shi, Jingjing Wang, Yanhong Chen, Siqing Liu, Yanmei Cui, X. Ao
{"title":"Impacts of CMEs on Earth Based on Logistic Regression and Recommendation Algorithm","authors":"Yurong Shi, Jingjing Wang, Yanhong Chen, Siqing Liu, Yanmei Cui, X. Ao","doi":"10.34133/2022/9852185","DOIUrl":null,"url":null,"abstract":"Coronal mass ejections (CMEs) are one of the major disturbance sources of space weather. Therefore, it is of great significance to determine whether CMEs will reach the earth. Utilizing the method of logistic regression, we first calculate and analyze the correlation coefficients of the characteristic parameters of CMEs. These parameters include central position angle, angular width, and linear velocity, which are derived from the Large Angle and Spectrometric Coronagraph (LASCO) images. We have developed a logistic regression model to predict whether a CME will reach the earth, and the model yields an F1 score of 30% and a recall of 53%. Besides, for each CME, we use the recommendation algorithm to single out the most similar historical event, which can be a reference to forecast CMEs geoeffectiveness forecasting and for comparative analysis.","PeriodicalId":136587,"journal":{"name":"Space: Science & Technology","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space: Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2022/9852185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coronal mass ejections (CMEs) are one of the major disturbance sources of space weather. Therefore, it is of great significance to determine whether CMEs will reach the earth. Utilizing the method of logistic regression, we first calculate and analyze the correlation coefficients of the characteristic parameters of CMEs. These parameters include central position angle, angular width, and linear velocity, which are derived from the Large Angle and Spectrometric Coronagraph (LASCO) images. We have developed a logistic regression model to predict whether a CME will reach the earth, and the model yields an F1 score of 30% and a recall of 53%. Besides, for each CME, we use the recommendation algorithm to single out the most similar historical event, which can be a reference to forecast CMEs geoeffectiveness forecasting and for comparative analysis.
基于Logistic回归和推荐算法的日冕物质抛射对地球的影响
日冕物质抛射是空间天气的主要干扰源之一。因此,确定cme是否会到达地球具有重要意义。利用逻辑回归的方法,首先计算并分析了cme特征参数的相关系数。这些参数包括中心位置角、角宽度和线速度,这些参数来自大角度和光谱日冕仪(LASCO)图像。我们开发了一个逻辑回归模型来预测CME是否会到达地球,该模型的F1得分为30%,召回率为53%。此外,对于每一个CME,我们使用推荐算法挑选出最相似的历史事件,可以作为CME地质有效性预测和对比分析的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信