Analysis Nozzle Temperature Effect In 3D Printer Fused Deposition Modelling (FDM) On Mechanical Properties and Characteristics Of Polylactic Acid (PLA)
{"title":"Analysis Nozzle Temperature Effect In 3D Printer Fused Deposition Modelling (FDM) On Mechanical Properties and Characteristics Of Polylactic Acid (PLA)","authors":"Muhamad Alfa Rizky, Agris Setiawan, Untung Sukamto","doi":"10.20961/mekanika.v21i1.59221","DOIUrl":null,"url":null,"abstract":"The development of the metallurgical industry in the material sector has made significant progress. FDM 3D Printer is a revolutionary technology in Additive Manufacturing (AM). Polylactic Acid (PLA) is a biodegradable and compostable polymer formed from the condensation of lactic acid. This study uses a Nozzle Temperature variation of 210⁰C, 220⁰C, and 230⁰C where shrinkage measurements will be carried out on the test object then Tensile testing, Flexural test, and macrostructural analysis will be carried out to determine the effect of Nozzle Temperature on the test. Based on the results of the study, it was found that the shrinkage produced by 3D Print specimens for Tensile Tests and Flexural Tests at Nozzle Temperature 230⁰C was very high, namely 2.83% and 4.33%, respectively. Nozzle Temperature at 230⁰C produces a fairly high σUTS and σFS of 39.60±2.60 MPa and 49.02±0.76 MPa, respectively. In macrostructural analysis, the Nozzle Temperature porosity at 230⁰C produces the smallest porosity of 0.04 mm2 or 1.46%. In this case, the increase in Nozzle Temperature resulted in a large enough shrinkage as evidenced by the small porosity formed. Therefore, variations in Nozzle Temperature on PLA 3D Printer Specimen greatly affect the mechanical properties of the material.","PeriodicalId":356258,"journal":{"name":"Mekanika: Majalah Ilmiah Mekanika","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mekanika: Majalah Ilmiah Mekanika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20961/mekanika.v21i1.59221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The development of the metallurgical industry in the material sector has made significant progress. FDM 3D Printer is a revolutionary technology in Additive Manufacturing (AM). Polylactic Acid (PLA) is a biodegradable and compostable polymer formed from the condensation of lactic acid. This study uses a Nozzle Temperature variation of 210⁰C, 220⁰C, and 230⁰C where shrinkage measurements will be carried out on the test object then Tensile testing, Flexural test, and macrostructural analysis will be carried out to determine the effect of Nozzle Temperature on the test. Based on the results of the study, it was found that the shrinkage produced by 3D Print specimens for Tensile Tests and Flexural Tests at Nozzle Temperature 230⁰C was very high, namely 2.83% and 4.33%, respectively. Nozzle Temperature at 230⁰C produces a fairly high σUTS and σFS of 39.60±2.60 MPa and 49.02±0.76 MPa, respectively. In macrostructural analysis, the Nozzle Temperature porosity at 230⁰C produces the smallest porosity of 0.04 mm2 or 1.46%. In this case, the increase in Nozzle Temperature resulted in a large enough shrinkage as evidenced by the small porosity formed. Therefore, variations in Nozzle Temperature on PLA 3D Printer Specimen greatly affect the mechanical properties of the material.