Robust cascaded canceller using projection statistics for adaptive radar

M. Picciolo, G. N. Schoenig, K. Gerlach, L. Mili
{"title":"Robust cascaded canceller using projection statistics for adaptive radar","authors":"M. Picciolo, G. N. Schoenig, K. Gerlach, L. Mili","doi":"10.1109/AERO.2005.1559513","DOIUrl":null,"url":null,"abstract":"Adaptive radar requires independent and identically distributed (i.i.d.) training data, or snapshots, in order to obtain fast SINR convergence performance in the presence of correlated interference such as jamming and/or clutter returns. Targets, clutter discretes, and impulsive jamming are examples of non i.i.d., real-world data components that corrupt interference training data. Such data are considered to be statistical outliers. Recent outlier detection work for space time adaptive processing (STAP) training data selection has involved use of the generalized inner product (GIP) test statistic. In this paper, we use a prewhitening method followed by a robust projection statistics (PS) algorithm for 2D outlier removal prior to each building block in a reiterative adaptive cascaded canceller. SINR performance is shown to be superior using 2D PS compared to 2D GIP to excise multiple outliers","PeriodicalId":117223,"journal":{"name":"2005 IEEE Aerospace Conference","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2005.1559513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Adaptive radar requires independent and identically distributed (i.i.d.) training data, or snapshots, in order to obtain fast SINR convergence performance in the presence of correlated interference such as jamming and/or clutter returns. Targets, clutter discretes, and impulsive jamming are examples of non i.i.d., real-world data components that corrupt interference training data. Such data are considered to be statistical outliers. Recent outlier detection work for space time adaptive processing (STAP) training data selection has involved use of the generalized inner product (GIP) test statistic. In this paper, we use a prewhitening method followed by a robust projection statistics (PS) algorithm for 2D outlier removal prior to each building block in a reiterative adaptive cascaded canceller. SINR performance is shown to be superior using 2D PS compared to 2D GIP to excise multiple outliers
基于投影统计的自适应雷达鲁棒级联对消器
自适应雷达需要独立且同分布(i.i.d)的训练数据或快照,以便在存在相关干扰(如干扰和/或杂波返回)的情况下获得快速的SINR收敛性能。目标、杂波离散和脉冲干扰是非id的例子,它们会破坏干扰训练数据。这样的数据被认为是统计上的异常值。近年来,空间自适应处理(STAP)训练数据选择中的离群值检测工作涉及到广义内积(GIP)检验统计量的使用。在本文中,我们使用了一种预白化方法,然后是鲁棒投影统计(PS)算法,在迭代自适应级联消去器的每个构建块之前去除2D离群值。在去除多个异常值时,使用2D PS的SINR性能优于2D GIP
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信