NEIVA

Chunyu Qiao, Gen Li, Jiliang Wang, Yunhao Liu
{"title":"NEIVA","authors":"Chunyu Qiao, Gen Li, Jiliang Wang, Yunhao Liu","doi":"10.1145/3326285.3329038","DOIUrl":null,"url":null,"abstract":"With the popularization of advanced cellular networks, mobile video occupies nearly three quarters of cellular network traffic. While previous adaptive bitrate (ABR) algorithms perform well under broadband network, their performance degrades in cellular networks due to throughput fluctuation. Through real world 4G/LTE network measurement, we find that throughput in cellular networks exhibits high fluctuation. It follows Markov behaviors with different states and different transition probability among states. We further find that the transition probability is stable along time but varies significantly under different environments. This inspires us to design ABR algorithms by improving throughput prediction in cellular networks. We propose NEIVA, a network environment identification based video bitrate adaption method in cellular networks. NEIVA trains a network environment identifier based on throughput data and trains a hidden Markov model (HMM) based throughput predictor for different environments. In online video bitrate selection, NEIVA utilizes the environment identifier to select the model for corresponding environment. Then NEIVA predicts future network performance by combining offline model and online throughput data. We implement NEIVA with MPC and evaluate it in real environment. The evaluation results show that with manually identifying environment, NEIVA improves 20%–25% bandwidth prediction accuracy and 11%–20% QoE improvement over the baseline predictors. With online environment identification, online NEIVA achieves 3.8% and 11.1% average QoE improvement over MPC and HMM, respectively.","PeriodicalId":269719,"journal":{"name":"Proceedings of the International Symposium on Quality of Service","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Symposium on Quality of Service","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3326285.3329038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the popularization of advanced cellular networks, mobile video occupies nearly three quarters of cellular network traffic. While previous adaptive bitrate (ABR) algorithms perform well under broadband network, their performance degrades in cellular networks due to throughput fluctuation. Through real world 4G/LTE network measurement, we find that throughput in cellular networks exhibits high fluctuation. It follows Markov behaviors with different states and different transition probability among states. We further find that the transition probability is stable along time but varies significantly under different environments. This inspires us to design ABR algorithms by improving throughput prediction in cellular networks. We propose NEIVA, a network environment identification based video bitrate adaption method in cellular networks. NEIVA trains a network environment identifier based on throughput data and trains a hidden Markov model (HMM) based throughput predictor for different environments. In online video bitrate selection, NEIVA utilizes the environment identifier to select the model for corresponding environment. Then NEIVA predicts future network performance by combining offline model and online throughput data. We implement NEIVA with MPC and evaluate it in real environment. The evaluation results show that with manually identifying environment, NEIVA improves 20%–25% bandwidth prediction accuracy and 11%–20% QoE improvement over the baseline predictors. With online environment identification, online NEIVA achieves 3.8% and 11.1% average QoE improvement over MPC and HMM, respectively.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信