A wideband time-frequency Weyl symbol and its generalization

B. Iem, A. Papandreou-Suppappola, G. Boudreaux-Bartels
{"title":"A wideband time-frequency Weyl symbol and its generalization","authors":"B. Iem, A. Papandreou-Suppappola, G. Boudreaux-Bartels","doi":"10.1109/TFSA.1998.721353","DOIUrl":null,"url":null,"abstract":"We extend the work of Shenoy and Parks (1994) on the wideband Weyl correspondence. We define a wideband Weyl symbol (P/sub 0/WS) in the time-frequency plane based on the Bertrand (1988) P/sub 0/-distribution, and we study its properties, examples and possible applications. Using warping relations, we generalize the P/sub 0/WS and the wideband spreading function (WSF) to analyze systems producing dispersive time shifts. We provide properties and special cases (e.g. power and exponential) to demonstrate the importance of our generalization. The new generalized WSF provides a new interpretation of a system output as a weighted superposition of dispersive time-shifted versions of the signal. We provide application examples in analysis and detection to demonstrate the advantages of our new results for linear systems with group delay characteristics matched to the specific warping used.","PeriodicalId":395542,"journal":{"name":"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFSA.1998.721353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We extend the work of Shenoy and Parks (1994) on the wideband Weyl correspondence. We define a wideband Weyl symbol (P/sub 0/WS) in the time-frequency plane based on the Bertrand (1988) P/sub 0/-distribution, and we study its properties, examples and possible applications. Using warping relations, we generalize the P/sub 0/WS and the wideband spreading function (WSF) to analyze systems producing dispersive time shifts. We provide properties and special cases (e.g. power and exponential) to demonstrate the importance of our generalization. The new generalized WSF provides a new interpretation of a system output as a weighted superposition of dispersive time-shifted versions of the signal. We provide application examples in analysis and detection to demonstrate the advantages of our new results for linear systems with group delay characteristics matched to the specific warping used.
一种宽带时频Weyl符号及其推广
我们扩展了Shenoy和Parks(1994)关于宽带Weyl通信的工作。基于Bertrand(1988)的P/sub 0/-分布,在时频平面上定义了一个宽带Weyl符号(P/sub 0/WS),并研究了其性质、示例和可能的应用。利用翘曲关系,推广P/sub 0/WS和宽带扩频函数(WSF)来分析产生色散时移的系统。我们提供性质和特殊情况(例如幂和指数)来证明我们的推广的重要性。新的广义WSF为系统输出提供了一种新的解释,即信号色散时移版本的加权叠加。我们提供了分析和检测中的应用实例,以证明我们的新结果对于具有与所使用的特定翘曲相匹配的群延迟特性的线性系统的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信