Estimation of Two-dimensional Class A Noise Model Parameters By Markov Chain Monte Carlo

Yu-zhong Jiang, Xiu-lin Hu, Wenyuan Li, Shu-xia Zhang
{"title":"Estimation of Two-dimensional Class A Noise Model Parameters By Markov Chain Monte Carlo","authors":"Yu-zhong Jiang, Xiu-lin Hu, Wenyuan Li, Shu-xia Zhang","doi":"10.1109/CAMSAP.2007.4498012","DOIUrl":null,"url":null,"abstract":"Antenna arrays are widely employed in communication systems, because the performance improvements over single antenna systems. The noise in multiple antennas may be statistically dependent from antenna to antenna and may be non-Gaussian. In this paper an efficient estimation of two-dimensional version Middleton's Class A noise model parameters is derived based on Markov Chain Monte Carlo (MCMC). This estimator can estimate five-parameter and hidden states for two-dimensional Class A noise model simultaneously. Simulation of this estimator indicates that this considered estimator is fast converges and low complexity for small data samples.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2007.4498012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Antenna arrays are widely employed in communication systems, because the performance improvements over single antenna systems. The noise in multiple antennas may be statistically dependent from antenna to antenna and may be non-Gaussian. In this paper an efficient estimation of two-dimensional version Middleton's Class A noise model parameters is derived based on Markov Chain Monte Carlo (MCMC). This estimator can estimate five-parameter and hidden states for two-dimensional Class A noise model simultaneously. Simulation of this estimator indicates that this considered estimator is fast converges and low complexity for small data samples.
二维A类噪声模型参数的马尔可夫链蒙特卡罗估计
天线阵列由于其性能优于单天线系统,在通信系统中得到了广泛的应用。多个天线中的噪声可能在统计上依赖于天线之间的噪声,并且可能是非高斯的。本文基于马尔可夫链蒙特卡罗(Markov Chain Monte Carlo, MCMC)导出了二维版本米德尔顿A类噪声模型参数的有效估计。该估计器可以同时估计二维A类噪声模型的五参数状态和隐藏状态。仿真结果表明,该估计器对于小样本数据收敛速度快,复杂度低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信