{"title":"Single Phase Second Order Sliding Mode Controller for Mismatched Uncertain Systems with Extended Disturbances and Unknown Time-Varying Delays","authors":"Trang Cong Nguyen, Chiem Trong Hien, D. Phan","doi":"10.55579/jaec.202262.353","DOIUrl":null,"url":null,"abstract":"In this paper, a novel single phase second order sliding mode controller (SPSOSMC) is proposed for the mismatched uncertain systems with extended disturbances and unknown time-varying delays. The main achievements of this study consist of three tasks: 1) a reaching phase in conventional sliding mode control (CSMC) technique is removed to ensure the global stability of the system; 2) an influence of the undesired high-frequency oscillation phenomenon in control input is vanished; 3) an exogenous perturbation is generally extended to the k-order disturbance of state variable. Firstly, a single phase switching manifold function is defined to eliminate the reaching phase in CSMC. Secondly, an unmeasurable state variable is estimated by using the proposed reduced-order sliding mode observer (ROSMO) tool. Next, a SPSOSMC is built based on the help of ROSMO tool and output information only. Then, a sufficient condition is established by employing the linear matrix inequality (LMI) technique and Lyapunov function theory such that the resulting sliding mode dynamics is asymptotically stable. Finally, a numerical example is simulated via the well-known MATLAB software to validate the effectiveness of the proposed technique.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited. ","PeriodicalId":250655,"journal":{"name":"J. Adv. Eng. Comput.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Adv. Eng. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55579/jaec.202262.353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, a novel single phase second order sliding mode controller (SPSOSMC) is proposed for the mismatched uncertain systems with extended disturbances and unknown time-varying delays. The main achievements of this study consist of three tasks: 1) a reaching phase in conventional sliding mode control (CSMC) technique is removed to ensure the global stability of the system; 2) an influence of the undesired high-frequency oscillation phenomenon in control input is vanished; 3) an exogenous perturbation is generally extended to the k-order disturbance of state variable. Firstly, a single phase switching manifold function is defined to eliminate the reaching phase in CSMC. Secondly, an unmeasurable state variable is estimated by using the proposed reduced-order sliding mode observer (ROSMO) tool. Next, a SPSOSMC is built based on the help of ROSMO tool and output information only. Then, a sufficient condition is established by employing the linear matrix inequality (LMI) technique and Lyapunov function theory such that the resulting sliding mode dynamics is asymptotically stable. Finally, a numerical example is simulated via the well-known MATLAB software to validate the effectiveness of the proposed technique.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.