Multi-objective Variable Weight Combination Forecasting Model Based on pccsAMOPSO

Dongfang Fan, Zhihong Jin, Kai Luo
{"title":"Multi-objective Variable Weight Combination Forecasting Model Based on pccsAMOPSO","authors":"Dongfang Fan, Zhihong Jin, Kai Luo","doi":"10.1109/ICACI52617.2021.9435872","DOIUrl":null,"url":null,"abstract":"In order to accurately predict the macroscopic material flow, aiming at the limitations of the existing medium and long-term macro material flow forecasting models, we propose a multi-objective variable weight combination prediction mode (MOVWCP) based on the parallel cell coordinates system Adaptive Multi-Objective Particle Swarm optimizer algorithm (pccsAMOPSO) to analyze and predict macro material flows. In order to improve the stability of MOVWCP, the concept of error entropy is proposed, at the same time, MOVWCP uses mean absolute percentage error (MAPE) and error entropy to build the objective functions. An intelligent heuristic algorithm based on pccsAMOPSO is designed to solve the Pareto front of variable weights during the fitting period and the variable weight Pareto solution was selected by using the sensitivity difference. A series of numerical experimental results verify the superiority of MOVWCP and its algorithm.","PeriodicalId":382483,"journal":{"name":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI52617.2021.9435872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to accurately predict the macroscopic material flow, aiming at the limitations of the existing medium and long-term macro material flow forecasting models, we propose a multi-objective variable weight combination prediction mode (MOVWCP) based on the parallel cell coordinates system Adaptive Multi-Objective Particle Swarm optimizer algorithm (pccsAMOPSO) to analyze and predict macro material flows. In order to improve the stability of MOVWCP, the concept of error entropy is proposed, at the same time, MOVWCP uses mean absolute percentage error (MAPE) and error entropy to build the objective functions. An intelligent heuristic algorithm based on pccsAMOPSO is designed to solve the Pareto front of variable weights during the fitting period and the variable weight Pareto solution was selected by using the sensitivity difference. A series of numerical experimental results verify the superiority of MOVWCP and its algorithm.
基于pccsAMOPSO的多目标变权组合预测模型
为了准确预测宏观物料流,针对现有中长期宏观物料流预测模型的局限性,提出了一种基于并行胞坐标系的自适应多目标粒子群优化算法(pccsAMOPSO)的多目标变权组合预测模式(MOVWCP)来分析和预测宏观物料流。为了提高MOVWCP的稳定性,提出了误差熵的概念,同时利用平均绝对误差百分比(MAPE)和误差熵来构建目标函数。设计了一种基于pccsAMOPSO的智能启发式算法,在拟合期间求解变权Pareto前,利用灵敏度差选择变权Pareto解。一系列数值实验结果验证了MOVWCP及其算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信