Resampling 4D images using adaptive filtering

Alexander Andreopoulos, John K. Tsotsos
{"title":"Resampling 4D images using adaptive filtering","authors":"Alexander Andreopoulos, John K. Tsotsos","doi":"10.1109/CRV.2005.69","DOIUrl":null,"url":null,"abstract":"We present an adaptive filtering based methodology for resampling 3D time series images using an extension of the method presented by simultaneously reducing the artifacts due to image noise and resample the data on a finer grid along the time dimension. This provides a methodology for obtaining high quality image resampling without the disadvantages of staircase artifacts created by more common interpolation methods such as linear interpolation. We present qualitative results of the algorithm on a data set of 4D cardiac MRI. This is a useful approach for any situation where we have a data set of 4D images needing to be resampled.","PeriodicalId":307318,"journal":{"name":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2005.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an adaptive filtering based methodology for resampling 3D time series images using an extension of the method presented by simultaneously reducing the artifacts due to image noise and resample the data on a finer grid along the time dimension. This provides a methodology for obtaining high quality image resampling without the disadvantages of staircase artifacts created by more common interpolation methods such as linear interpolation. We present qualitative results of the algorithm on a data set of 4D cardiac MRI. This is a useful approach for any situation where we have a data set of 4D images needing to be resampled.
使用自适应滤波对4D图像进行重采样
我们提出了一种基于自适应滤波的方法,用于对3D时间序列图像进行重采样,该方法是对该方法的扩展,同时减少了由于图像噪声引起的伪影,并沿着时间维度在更细的网格上对数据进行重采样。这提供了一种获得高质量图像重采样的方法,而没有更常见的插值方法(如线性插值)产生的阶梯伪影的缺点。我们在4D心脏MRI数据集上给出了该算法的定性结果。这是一个有用的方法,对于任何情况下,我们有一个数据集的4D图像需要重新采样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信