Graph-theoretic algorithms for polynomial optimization problems

S. Sojoudi, Ramtin Madani, G. Fazelnia, J. Lavaei
{"title":"Graph-theoretic algorithms for polynomial optimization problems","authors":"S. Sojoudi, Ramtin Madani, G. Fazelnia, J. Lavaei","doi":"10.1109/CDC.2014.7039733","DOIUrl":null,"url":null,"abstract":"The objective of this tutorial paper is to study a general polynomial optimization problem using a semidefinite programming (SDP) relaxation. The first goal is to show how the underlying structure and sparsity of an optimization problem affect its computational complexity. Graph-theoretic algorithms are presented to address this problem based on the notions of low-rank optimization and matrix completion. By building on this result, it is then shown that every polynomial optimization problem admits a sparse representation whose SDP relaxation has a rank 1 or 2 solution. The implications of these results are discussed in details and their applications in decentralized control and power systems are also studied.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7039733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The objective of this tutorial paper is to study a general polynomial optimization problem using a semidefinite programming (SDP) relaxation. The first goal is to show how the underlying structure and sparsity of an optimization problem affect its computational complexity. Graph-theoretic algorithms are presented to address this problem based on the notions of low-rank optimization and matrix completion. By building on this result, it is then shown that every polynomial optimization problem admits a sparse representation whose SDP relaxation has a rank 1 or 2 solution. The implications of these results are discussed in details and their applications in decentralized control and power systems are also studied.
多项式优化问题的图论算法
本文的目的是利用半定规划(SDP)松弛来研究一般多项式优化问题。第一个目标是展示优化问题的底层结构和稀疏性如何影响其计算复杂度。基于低秩优化和矩阵补全的概念,提出了图论算法来解决这个问题。在此结果的基础上,证明了每个多项式优化问题都有一个稀疏表示,其SDP松弛具有1或2阶解。详细讨论了这些结果的意义,并研究了它们在分散控制和电力系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信