{"title":"An assessment of ten-fold and Monte Carlo cross validations for time series forecasting","authors":"Rigoberto Fonseca, P. Gómez-Gil","doi":"10.1109/ICEEE.2013.6676075","DOIUrl":null,"url":null,"abstract":"On a meta-learning process, the key is to build a reliable meta-training data set, which requires the best model for a specific sample. In the other hand, the uncertainty of expected accuracy of a particular model increases when data depend on time. Then, during meta-learning, an accurate validation of the reliability of the involved models is critical. This paper compares the applicability of two of the most used methods for validating forecasting models: ten-fold and Monte Carlo cross validations. Experimental results, using time series of the NN3 tournament, found that Monte Carlo cross validation is more stable than ten-fold cross validation for selecting the best forecasting model.","PeriodicalId":226547,"journal":{"name":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2013.6676075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
On a meta-learning process, the key is to build a reliable meta-training data set, which requires the best model for a specific sample. In the other hand, the uncertainty of expected accuracy of a particular model increases when data depend on time. Then, during meta-learning, an accurate validation of the reliability of the involved models is critical. This paper compares the applicability of two of the most used methods for validating forecasting models: ten-fold and Monte Carlo cross validations. Experimental results, using time series of the NN3 tournament, found that Monte Carlo cross validation is more stable than ten-fold cross validation for selecting the best forecasting model.