An assessment of ten-fold and Monte Carlo cross validations for time series forecasting

Rigoberto Fonseca, P. Gómez-Gil
{"title":"An assessment of ten-fold and Monte Carlo cross validations for time series forecasting","authors":"Rigoberto Fonseca, P. Gómez-Gil","doi":"10.1109/ICEEE.2013.6676075","DOIUrl":null,"url":null,"abstract":"On a meta-learning process, the key is to build a reliable meta-training data set, which requires the best model for a specific sample. In the other hand, the uncertainty of expected accuracy of a particular model increases when data depend on time. Then, during meta-learning, an accurate validation of the reliability of the involved models is critical. This paper compares the applicability of two of the most used methods for validating forecasting models: ten-fold and Monte Carlo cross validations. Experimental results, using time series of the NN3 tournament, found that Monte Carlo cross validation is more stable than ten-fold cross validation for selecting the best forecasting model.","PeriodicalId":226547,"journal":{"name":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2013.6676075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

On a meta-learning process, the key is to build a reliable meta-training data set, which requires the best model for a specific sample. In the other hand, the uncertainty of expected accuracy of a particular model increases when data depend on time. Then, during meta-learning, an accurate validation of the reliability of the involved models is critical. This paper compares the applicability of two of the most used methods for validating forecasting models: ten-fold and Monte Carlo cross validations. Experimental results, using time series of the NN3 tournament, found that Monte Carlo cross validation is more stable than ten-fold cross validation for selecting the best forecasting model.
对时间序列预测的十倍交叉验证和蒙特卡罗交叉验证的评估
在元学习过程中,关键是建立一个可靠的元训练数据集,这需要针对特定样本的最佳模型。另一方面,当数据依赖于时间时,特定模型的预期精度的不确定性会增加。然后,在元学习过程中,对所涉及模型的可靠性进行准确验证是至关重要的。本文比较了验证预测模型的两种最常用方法的适用性:十倍交叉验证和蒙特卡罗交叉验证。利用NN3锦标赛时间序列的实验结果发现,在选择最佳预测模型时,蒙特卡罗交叉验证比十倍交叉验证更稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信