Improving Penalized-Based Clustering Model in Big Fusion Data by Hybrid Black Hole Algorithm

Sarah G. M. Al- Kababchee, Z. Algamal, O. Qasim
{"title":"Improving Penalized-Based Clustering Model in Big Fusion Data by Hybrid Black Hole Algorithm","authors":"Sarah G. M. Al- Kababchee, Z. Algamal, O. Qasim","doi":"10.54216/fpa.110105","DOIUrl":null,"url":null,"abstract":"This paper presents an improved penalized regression-based clustering algorithm using a nature-inspired approach. Clustering is an unsupervised learning method widely used in data fusion mining, including gene analysis, to group unclassified fusion data based on their features. The proposed algorithm is an extension of the Sum of Norms model and aims to better estimate the data by fusing information from various sources. The performance of the proposed algorithm is evaluated on gene expression data. Results show that our approach outperforms other methods, indicating its potential impact on clustering research with data fusion.","PeriodicalId":269527,"journal":{"name":"Fusion: Practice and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion: Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/fpa.110105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an improved penalized regression-based clustering algorithm using a nature-inspired approach. Clustering is an unsupervised learning method widely used in data fusion mining, including gene analysis, to group unclassified fusion data based on their features. The proposed algorithm is an extension of the Sum of Norms model and aims to better estimate the data by fusing information from various sources. The performance of the proposed algorithm is evaluated on gene expression data. Results show that our approach outperforms other methods, indicating its potential impact on clustering research with data fusion.
基于混合黑洞算法改进大融合数据中基于惩罚的聚类模型
本文提出了一种改进的基于惩罚回归的聚类算法。聚类是一种无监督学习方法,广泛应用于基因分析等数据融合挖掘中,根据未分类融合数据的特征对其进行分组。该算法是规范和模型的扩展,旨在通过融合各种来源的信息来更好地估计数据。利用基因表达数据对算法的性能进行了评价。结果表明,该方法优于其他方法,表明其对数据融合聚类研究的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信