Discovering and Quantifying Misconceptions in Formal Methods Using Intelligent Tutoring Systems

Marko Schmellenkamp, Alexandra Latys, T. Zeume
{"title":"Discovering and Quantifying Misconceptions in Formal Methods Using Intelligent Tutoring Systems","authors":"Marko Schmellenkamp, Alexandra Latys, T. Zeume","doi":"10.1145/3545945.3569806","DOIUrl":null,"url":null,"abstract":"In this paper we advocate the study of misconceptions in the formal methods domain by integrating quantitative and qualitative methods. In this domain, so far, misconceptions have mostly been studied with qualitative methods, typically via interviews with less than 20 subjects. We discuss workflows for (1) determining the commonness of qualitatively established misconceptions by quantitative means; and for (2) the initial discovery of misconceptions by quantitative methods followed by qualitative assessments. Parts of these workflows are then applied to a data set for exercises on logical modeling from the intelligent tutoring system Iltis with > 250 data points for many of the exercises. We analyze the data in order to (1) determine the commonness of qualitativelyidentified misconceptions on modeling in propositional logic; and to (2) discover typical mistakes in modeling in propositional logic, modal logic, and first-order logic.","PeriodicalId":371326,"journal":{"name":"Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545945.3569806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we advocate the study of misconceptions in the formal methods domain by integrating quantitative and qualitative methods. In this domain, so far, misconceptions have mostly been studied with qualitative methods, typically via interviews with less than 20 subjects. We discuss workflows for (1) determining the commonness of qualitatively established misconceptions by quantitative means; and for (2) the initial discovery of misconceptions by quantitative methods followed by qualitative assessments. Parts of these workflows are then applied to a data set for exercises on logical modeling from the intelligent tutoring system Iltis with > 250 data points for many of the exercises. We analyze the data in order to (1) determine the commonness of qualitativelyidentified misconceptions on modeling in propositional logic; and to (2) discover typical mistakes in modeling in propositional logic, modal logic, and first-order logic.
利用智能辅导系统发现和量化形式化方法中的错误观念
在本文中,我们提倡用定量和定性相结合的方法来研究形式方法领域的误解。在这个领域,到目前为止,误解大多是用定性方法研究的,通常是通过少于20个受试者的访谈。我们讨论了以下工作流程:(1)通过定量手段确定定性建立的误解的共性;(2)首先用定量方法发现误解,然后进行定性评价。然后将这些工作流的部分应用于来自智能辅导系统Iltis的逻辑建模练习的数据集,其中许多练习具有bbbb250个数据点。我们分析数据是为了(1)确定在命题逻辑建模中定性识别的错误概念的共性;(2)发现命题逻辑、模态逻辑和一阶逻辑中典型的建模错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信