A CVD Critical Level-aware Scheduling Model Based on Reinforcement Learning for ECG Service Request

Jian Gao, Jie Yu, Ning Wang, Panpan Feng, Huiqing Cheng, Bing Zhou, Zongmin Wang
{"title":"A CVD Critical Level-aware Scheduling Model Based on Reinforcement Learning for ECG Service Request","authors":"Jian Gao, Jie Yu, Ning Wang, Panpan Feng, Huiqing Cheng, Bing Zhou, Zongmin Wang","doi":"10.1109/CyberC55534.2022.00039","DOIUrl":null,"url":null,"abstract":"In the cardiovascular disease (CVD) diagnosis scenario, the number of electrocardiogram (ECG) service request data is large and the severity of CVD is different. Efficient task scheduling is the key to large cluster computer-aided CVD diagnosis. Therefore, in task scheduling, the workload changes and the critical condition of CVD must be paid attention to. We propose a CVD critical level-aware scheduling model based on reinforcement learning (CLS-RL) to optimize ECG service request scheduling. To solve the problem that there is no publicly available ECG service request data, this paper proposes a method of composing it. Then, we utilize RL with Actor-Critic to improve the efficiency of scheduling. Finally, we define the new objective functions for ECG service request scheduling. The experimental results show that the proposed CLS-RL is the best in comprehensive performance.","PeriodicalId":234632,"journal":{"name":"2022 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberC55534.2022.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the cardiovascular disease (CVD) diagnosis scenario, the number of electrocardiogram (ECG) service request data is large and the severity of CVD is different. Efficient task scheduling is the key to large cluster computer-aided CVD diagnosis. Therefore, in task scheduling, the workload changes and the critical condition of CVD must be paid attention to. We propose a CVD critical level-aware scheduling model based on reinforcement learning (CLS-RL) to optimize ECG service request scheduling. To solve the problem that there is no publicly available ECG service request data, this paper proposes a method of composing it. Then, we utilize RL with Actor-Critic to improve the efficiency of scheduling. Finally, we define the new objective functions for ECG service request scheduling. The experimental results show that the proposed CLS-RL is the best in comprehensive performance.
基于强化学习的心电服务请求CVD临界电平感知调度模型
在心血管疾病(CVD)诊断场景中,心电图(ECG)服务请求数据数量大,且CVD的严重程度不同。高效的任务调度是实现大集群CVD计算机辅助诊断的关键。因此,在任务调度中,必须关注CVD的工作负载变化和临界状态。提出了一种基于强化学习(CLS-RL)的心电服务请求调度优化模型。针对目前心电服务请求数据缺乏公开可用的问题,提出了一种心电服务请求数据的合成方法。然后,我们利用RL和Actor-Critic来提高调度效率。最后,我们定义了新的心电服务请求调度目标函数。实验结果表明,所提出的CLS-RL综合性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信