Parallax Motion Effect Generation Through Instance Segmentation And Depth Estimation

A. Pinto, Manuel Alberto Cordova Neira, L. G. L. Decker, J. L. Flores-Campana, M. R. Souza, A. Santos, Jhonatas S. Conceição, H. F. Gagliardi, D. Luvizon, R. Torres, H. Pedrini
{"title":"Parallax Motion Effect Generation Through Instance Segmentation And Depth Estimation","authors":"A. Pinto, Manuel Alberto Cordova Neira, L. G. L. Decker, J. L. Flores-Campana, M. R. Souza, A. Santos, Jhonatas S. Conceição, H. F. Gagliardi, D. Luvizon, R. Torres, H. Pedrini","doi":"10.1109/ICIP40778.2020.9191168","DOIUrl":null,"url":null,"abstract":"Stereo vision is a growing topic in computer vision due to the innumerable opportunities and applications this technology offers for the development of modern solutions, such as virtual and augmented reality applications. To enhance the user’s experience in three-dimensional virtual environments, the motion parallax estimation is a promising technique to achieve this objective. In this paper, we propose an algorithm for generating parallax motion effects from a single image, taking advantage of state-of-the-art instance segmentation and depth estimation approaches. This work also presents a comparison against such algorithms to investigate the trade-off between efficiency and quality of the parallax motion effects, taking into consideration a multi-task learning network capable of estimating instance segmentation and depth estimation at once. Experimental results and visual quality assessment indicate that the PyD-Net network (depth estimation) combined with Mask R-CNN or FBNet networks (instance segmentation) can produce parallax motion effects with good visual quality.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Stereo vision is a growing topic in computer vision due to the innumerable opportunities and applications this technology offers for the development of modern solutions, such as virtual and augmented reality applications. To enhance the user’s experience in three-dimensional virtual environments, the motion parallax estimation is a promising technique to achieve this objective. In this paper, we propose an algorithm for generating parallax motion effects from a single image, taking advantage of state-of-the-art instance segmentation and depth estimation approaches. This work also presents a comparison against such algorithms to investigate the trade-off between efficiency and quality of the parallax motion effects, taking into consideration a multi-task learning network capable of estimating instance segmentation and depth estimation at once. Experimental results and visual quality assessment indicate that the PyD-Net network (depth estimation) combined with Mask R-CNN or FBNet networks (instance segmentation) can produce parallax motion effects with good visual quality.
基于实例分割和深度估计的视差运动效果生成
立体视觉是计算机视觉中一个日益增长的话题,因为该技术为现代解决方案的开发提供了无数的机会和应用,例如虚拟和增强现实应用。为了增强用户在三维虚拟环境中的体验,运动视差估计是实现这一目标的一种很有前途的技术。在本文中,我们提出了一种利用最先进的实例分割和深度估计方法从单个图像生成视差运动效果的算法。本研究还对这些算法进行了比较,以研究视差运动效果的效率和质量之间的权衡,并考虑了能够同时估计实例分割和深度估计的多任务学习网络。实验结果和视觉质量评估表明,PyD-Net网络(深度估计)与Mask R-CNN或FBNet网络(实例分割)相结合可以产生视差运动效果,且视觉质量良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信