Dynamic planar convex hull operations in near-logarithmic amortized time

Timothy M. Chan
{"title":"Dynamic planar convex hull operations in near-logarithmic amortized time","authors":"Timothy M. Chan","doi":"10.1109/SFFCS.1999.814581","DOIUrl":null,"url":null,"abstract":"We give a data structure that allows arbitrary insertions and deletions on a planar point set P and supports basic queries on the convex hull of P, such as membership and tangent-finding. Updates take O(log/sup 1+/spl epsiv// n) amortized time and queries take O(log n) time each, where n is the maximum size of P and /spl epsiv/ is any fixed positive constant. For some advanced queries such as bridge-finding, both our bounds increase to O(log/sup 3/2/ n). The only previous fully dynamic solution was by Overmars and van Leeuwen (1981) and required O(log/sup 2/ n) time per update.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

Abstract

We give a data structure that allows arbitrary insertions and deletions on a planar point set P and supports basic queries on the convex hull of P, such as membership and tangent-finding. Updates take O(log/sup 1+/spl epsiv// n) amortized time and queries take O(log n) time each, where n is the maximum size of P and /spl epsiv/ is any fixed positive constant. For some advanced queries such as bridge-finding, both our bounds increase to O(log/sup 3/2/ n). The only previous fully dynamic solution was by Overmars and van Leeuwen (1981) and required O(log/sup 2/ n) time per update.
近对数平摊时间的动态平面凸壳运算
我们给出了一个允许在平面点集P上任意插入和删除的数据结构,并支持在P的凸包上的基本查询,如隶属关系和切线查找。更新需要O(log/sup 1+/spl epsiv// n)平摊时间,查询每次需要O(log n)时间,其中n是P的最大大小,/spl epsiv/是任何固定的正常数。对于一些高级查询,如桥查找,我们的边界都增加到O(log/sup 3/2/ n)。之前唯一的完全动态解决方案是由Overmars和van Leeuwen(1981)提出的,每次更新需要O(log/sup 2/ n)时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信